By using the fact that `(1 + x)^11 = (1 + x)^3(1 + x)^8`, show that
`((11),(5)) = ((8),(5)) + ((3),(1))((8),(4)) + ((3),(2))((8),(3)) + ((8),(2))`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
By using the fact that `(1 + x)^11 = (1 + x)^3(1 + x)^8`, show that
`((11),(5)) = ((8),(5)) + ((3),(1))((8),(4)) + ((3),(2))((8),(3)) + ((8),(2))`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text(See Worked Solutions)`
`text(General term of)\ \ (1 + x)^11 :`
`T_k = \ ^11C_k · 1^(11-k) · x^k`
`=> \ ^11C_5\ text(is the co-efficient of)\ x^5`
`(1 + x)^3 = \ ^3C_0 + \ ^3C_1 x + \ ^3C_2 x^2 + \ ^3C_3 x^3`
`(1 + x)^8 = \ ^8C_0 + \ ^8C_1 x + \ ^8C_2 x^2 + \ ^8C_3 x^3 + \ ^8C_4 x^4 + \ ^8C_5 x^5 + …`
`:.\ text(Coefficient of)\ x^5\ text(in)\ \ (1 + x)^3(1 + x)^8 `
`= \ ^3C_0 · \ ^8C_5 + \ ^3C_1 · \ ^8C_4 + \ ^3C_2 · \ ^8C_3 + \ ^3C_3 · \ ^8C_2`
`= \ ^8C_5 + \ ^3C_1 · \ ^8C_4 + \ ^3C_2 · \ ^8C_3 + \ ^8C_2`
`text(Equating coefficients:)`
`((11),(5)) = ((8),(5)) + ((3),(1))((8),(4)) + ((3),(2))((8),(3)) + ((8),(2))`
Using `(1 + x)^4(1 + x)^9 = (1 + x)^13`
show that
`\ ^9C_4 + \ ^4C_1\ ^9C_3 + \ ^4C_2\ ^9C_2 + \ ^4C_3\ ^9C_1 + 1 = \ ^13C_4` (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`text(See Worked Solutions)`
`text(Expanding)\ \ (1 + x)^13 :`
`T_k = \ ^13C_k · 1^(13-k) · x^k`
`=> \ ^13C_4\ text(is coefficient of)\ x^4`
`(1 + x)^4 = \ ^4C_0 + \ ^4C_1 x + \ ^4C_2 x^2 + \ ^4C_3 x^3 + \ ^4C_4 x^4`
`(1 + x)^9 = \ ^9C_0 + \ ^9C_1 x + \ ^9C_2 x^2 + \ ^9C_3 x^3 + \ ^9C_4 x^4 + …`
`:.\ text(Coefficient of)\ x^4\ text(in)\ \ (1 + x)^4(1 + x)^9`
`= \ ^4C_0·\ ^9C_4 + \ ^4C_1·\ ^9C_3 + \ ^4C_2·\ ^9C_2 + \ ^4C_3·\ ^9C_1 + \ ^4C_4·\ ^9C_0`
`= \ ^9C_4 + \ ^4C_1·\ ^9C_3 + \ ^4C_2·\ ^9C_2 + \ ^4C_3·\ ^9C_1 + 1`
`= \ ^13C_4\ \ …\ text(as required)`
--- 12 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `text(Proof)\ \ text{(See Worked Solutions)}`
ii. `((23), (4)) 2^19`
i. `text(Using binomial expansion:)`
`(2 + x)^n= ((n), (0)) 2^n + ((n), (1)) 2^(n-1) x + ((n), (2)) 2^(n-2) x^2 + … + ((n), (n)) x^n`
`[1 + (1 + x)]^n= ((n), (0)) + ((n), (1)) (1 + x) + ((n), (2)) (1 + x)^2 + … + ((n), (n)) (1 + x)^n`
`=>\ text(S)text(ince both expansions are equal, we can equate the)`
`text(the coefficients of)\ x^r.`
`text(Coefficient of)\ x^r\ text(in the expansion of)\ \ (2+x)^n :`
`((n), (r)) 2^(n-r) qquad …\ text{(1)}`
`text(Coefficient of)\ x^r\ text(in the expansion of)\ \ [1 + (1 + x)]^n :`
`=>x^r\ \ text(exists in all terms where)\ \ n>=r`
`text(Consider the co-efficients of)\ \ x^r ,`
`text(When)\ \ n=r:\ \ ((n), (r))((r), (r))`
`text(When)\ \ n=r+1:\ \ ((n), (r+1))((r+1), (r))`
`vdots`
`text(When)\ \ n=n:\ \ ((n), (n))((n), (r))`
`text{Equating the coefficients:}`
`((n), (r))((r), (r)) + ((n), (r + 1))((r + 1), (r)) + … + ((n), (n))((n), (r)) =((n), (r)) 2^(n-r)`
`text(… as required)`
ii. `text(Consider the possible combinations when,)`
`A\ text(selects 4:)\ \ ((23), (4))((4),(4))`
`A\ text(selects 5:)\ \ ((23), (5))((5),(4))`
`A\ text(selects 6:)\ \ ((23), (6))((6),(4))`
`vdots`
`A\ text(selects 23:)\ \ ((23), (23))((23),(4))`
`:.\ text(Total possibilities)`
`=underbrace{((23), (4))((4),(4)) + ((23), (5))((5),(4)) + … + ((23), (23))((23),(4))}_text{Using part (i)}`
`=((23), (4)) 2^(23-4)`
`= ((23), (4)) 2^(19)`
--- 3 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 12 WORK AREA LINES (style=lined) ---
i. `((4n),(2n))`
ii. `text(Proof)\ \ text{(See Worked Solutions)}`
iii. `text(Proof)\ \ text{(See Worked Solutions)}`
i. `text(Find co-efficient of)\ x^(2n).`
`text(Expanding)\ (1+x)^(4n):`
`((4n),(0)) + ((4n),(1))x + ((4n),(2))x^2 + … + ((4n),(2n))x^(2n) + …`
`:.\ text(Co-efficient of)\ \ x^(2n)\ text(is)\ ((4n),(2n))`
ii. `text(Show)\ (1 + x^2 + 2x)^(2n) = sum_(k=0)^(2n) ((2n),(k)) x^(2n-k) (x + 2)^(2n-k)`
`text(Using)\ (1 + x^2 + 2x)^(2n) = [x(x + 2) + 1]^(2n)`
| `[x (x + 2) + 1]^(2n)` |
| `= ((2n),(0)) (x(x + 2))^(2n) + ((2n),(1)) (x(x + 2))^(2n-1) + … + ((2n),(2n))` |
| `= ((2n),(0)) x^(2n)(x + 2)^(2n) + ((2n),(1)) x^(2n-1) (x + 2)^(2n-1) + … + ((2n),(2n))` |
| `= sum_(k=0)^(2n) ((2n),(k)) x^(2n-k) (x + 2)^(2n-k)\ text(… as required.)` |
iii. `((4n),(2n))\ text(is the co-eff of)\ x^(2n)\ text(in expansion)\ (1+x)^(4x)`
`text(S)text(ince)\ (1 + x^2 + 2x)^(2n) = ((x+1)^2)^(2n) = (1 + x)^(4n)`
`=> ((4n),(2n))\ text(is co-efficient of)\ x^(2n)\ text(in expansion)\ (1 + x^2 + 2x)^(2n)`
`text(Using part)\ text{(ii):}`
`(1 + x^2 + 2x)^(2n) = sum_(k=0)^(2n) ((2n),(k))\ x^(2n-k) (x + 2)^(2n-k)`
`text(Using the given identity,)\ x^(2n)\ text(co-efficients are:)`
| `k = 0,` | `\ ((2n),(0))((2n-0),(0)) 2^(2n-0)` |
| `k = 1,` | `\ ((2n),(1))((2n-1),(1)) 2^(2n-1-1)` |
| `vdots` | |
| `k = n,` | `\ ((2n),(n))((2n-n),(n)) 2^(2n-n-n)` |
| `:.\ ((4n),(2n))` |
| `= ((2n),(0))((2n),(0))2^(2n) + ((2n),(1))((2n-1),(1))2^(2n-2) + … + ((2n),(n))((n),(n)) 2^0` |
| ` = sum_(k=0)^(n)\ ((2n),(k))((2n-k),(k)) 2^(2n-2k)\ \ \ \ text(… as required)` |