SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, EXT1′ F1 2007 HSC 3a*

The diagram shows the graph of  \(y = f(x)\). The line  \(y = x\)  is an asymptote.

Draw separate one-third page sketches of the graphs of the following:

  1.   \(f(\abs{x})\).   (2 marks)

    --- 10 WORK AREA LINES (style=lined) ---

  2.    \(f(x)-x\).   (2 marks)

    --- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

i.       
       

ii.
           

Show Worked Solution
MARKER’S COMMENT: In part (i), a significant number of students graphed  \(y=\abs{f(x)}\).
i.

 

ii. 

Filed Under: Graphical Relationships Tagged With: Band 4, Band 5, page-break-before-solution, smc-6640-30-\(y=\abs{f(x)}; y=f(\abs{x}) \), smc-6640-60-\(f(x)-g(x)\)

Functions, EXT1′ F1 2019 HSC 12d

Consider the function  \(f(x) = x^3-1\).

  1.  Sketch the graph  \(y = \abs{f(x)}\).   (1 mark)

    --- 10 WORK AREA LINES (style=lined) ---

  2.  Sketch the graph  \(y = \dfrac{1}{f(x)}\).   (2 marks)

    --- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    \(y = \abs{x^3-1}\)

ii.  \(y = \dfrac{1}{x^3-1}\)

Show Worked Solution

i.    \(y = \abs{x^3-1}\)

ii.  \(y = \dfrac{1}{x^3-1}\)

Filed Under: Graphical Relationships Tagged With: Band 4, smc-6640-30-\(y=\abs{f(x)}; y=f(\abs{x}) \)

Functions, EXT1′ F1 2012 HSC 11fi

Sketch the function   \(y = \abs{x}- 1\), showing the \(x\)- and \(y\)-intercepts.   (2 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(See Worked Solutions.)`

Show Worked Solution

Filed Under: Graphical Relationships Tagged With: Band 3, smc-6640-30-\(y=\abs{f(x)}; y=f(\abs{x}) \)

Functions, EXT1′ F1 2018 HSC 12di

The diagram shows the graph of the function  \(f(x) = \dfrac{x}{x-1}\).
  


 

Draw a graph of   \(y = \abs{f(x)}\), showing all asymptotes and intercepts.   (2 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

Show Worked Solution

Filed Under: Graphical Relationships Tagged With: Band 3, smc-6640-30-\(y=\abs{f(x)}; y=f(\abs{x}) \)

Functions, EXT1 F1 2024 HSC 6 MC

How many real value(s) of \(x\) satisfy the equation

\(\abs{b} = \abs{b\,\sin(4x)}\),

where  \(x \in [0, 2\pi]\) and \(b\) is not zero?

  1. \(1\)
  2. \(2\)
  3. \(4\)
  4. \(8\)
Show Answers Only

\(D\)

Show Worked Solution

\(\abs{b} = \abs{b\,\sin(4x)}\ \ \Rightarrow\ \ \abs{1} = \abs{\sin(4x)}\ \ (b \neq 0)\)

\(\sin(4x) = \pm 1\)

\(x \in [0, 2\pi]\ \ \Rightarrow\ \ 4x \in [0, 8\pi]\)

\(\therefore 8\ \text{real solutions}\)

\(\Rightarrow D\)

♦ Mean mark 53%.

Filed Under: Graphical Relationships, Reflections and Harder Graphs (Ext1) Tagged With: Band 5, smc-1072-30-\(y=\abs{f(x)}; y=f(\abs{x}) \), smc-6640-30-\(y=\abs{f(x)}; y=f(\abs{x}) \), y = f(|x|)

Functions, EXT1 F1 EQ-Bank 5

Given  \(f(x)=x(x+2)(2-x)\)
 

On the graph, sketch the graphs of  \(y=f(\abs{x})\)   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

 

Show Worked Solution

Filed Under: Graphical Relationships, Reflections and Harder Graphs (Ext1) Tagged With: Band 3, smc-1072-30-\(y=\abs{f(x)}; y=f(\abs{x}) \), smc-6640-30-\(y=\abs{f(x)}; y=f(\abs{x}) \), y = f(|x|)

Functions, EXT1 F1 EQ-Bank 6

The diagram shows the graph of  \(f(x)=x(x+2)(2-x)\)
 

On the graph, sketch the graph of  \(y=\abs{f(x)}\)   (2 marks)

--- 0 WORK AREA LINES (style=blank) ---

Show Answers Only

Show Worked Solution

Filed Under: Graphical Relationships, Reflections and Harder Graphs (Ext1) Tagged With: Band 3, smc-1072-30-\(y=\abs{f(x)}; y=f(\abs{x}) \), smc-6640-30-\(y=\abs{f(x)}; y=f(\abs{x}) \), y = f(|x|)

Functions, EXT1 F1 EQ-Bank 2

Sketch the graph of  \(y=\abs{x^2-5x+4}\).   (2 marks)

--- 10 WORK AREA LINES (style=blank) ---

Show Answers Only

Show Worked Solution

\(y=\abs{x^2-5 x+4}=\abs{(x-1)(x-4)}\)

\(x\text{-intercepts at} \ (1,0), (4,0)\)

\(y=(x-1)(x-4) \ \text{has low at} \ \ x=\dfrac{5}{2} \ \text{(by symmetry)}\)

\(\Rightarrow \ \text {Low at} \ \left(\dfrac{5}{2},\dfrac{-9}{4}\right)\)
 

Filed Under: Graphical Relationships, Reflections and Harder Graphs (Ext1) Tagged With: Band 4, smc-1072-30-\(y=\abs{f(x)}; y=f(\abs{x}) \), smc-6640-30-\(y=\abs{f(x)}; y=f(\abs{x}) \), y = f(|x|)

Functions, EXT1 F1 EQ-Bank 1

Sketch the graph of  \(y=\abs{x^2-1}\).   (2 marks)

--- 10 WORK AREA LINES (style=blank) ---

Show Answers Only

Show Worked Solution

\(y=\left|x^2-1\right|\)

\( x\text{-intercepts at} \ (-1,0), (1,0)\)

\(y=x^2-1 \ \ \text{has a low at} \ (0,-1)\)
 

Filed Under: Graphical Relationships, Reflections and Harder Graphs (Ext1) Tagged With: Band 3, smc-1072-30-\(y=\abs{f(x)}; y=f(\abs{x}) \), smc-6640-30-\(y=\abs{f(x)}; y=f(\abs{x}) \), y = f(|x|)

Functions, EXT1 F1 2023 HSC 8 MC

The diagram shows the graph of a function.
 

Which of the following is the equation of the function?

  1. \(y=\Big{|}1-\big{|}|x|-2\big{|}\Big{|}\)
  2. \(y=\Big{|}2-\big{|}|x|-1\big{|}\Big{|}\)
  3. \(y=\Big{|}1-\big{|}x-2\big{|}\Big{|}\)
  4. \(y=\Big{|}2-\big{|}x-1\big{|}\Big{|}\)
Show Answers Only

\(A\)

Show Worked Solution

\(\text{By elimination:}\)

\(\text{Even function}\ \rightarrow\ \text{Eliminate}\ C\ \text{and}\ D \)

\(\text{Graph passes through}\ (1, 0) \)

\(\text{Option}\ A:\ \ y=\Big{|}1-\big{|}1-2\big{|}\Big{|} =\Big{|}1-1\Big{|}=0\ \ \text{(lies on graph)} \)

\(\text{Option}\ B:\ \ y=\Big{|}2-\big{|}|1|-1\big{|}\Big{|} =\Big{|}2-0\Big{|}=2\ \ \text{(not on graph)} \)

\(\therefore\ \text{Eliminate}\ B \)

\(\Rightarrow A\)

Filed Under: Graphical Relationships, Reflections and Harder Graphs (Ext1) Tagged With: Band 4, smc-1072-30-\(y=\abs{f(x)}; y=f(\abs{x}) \), smc-6640-30-\(y=\abs{f(x)}; y=f(\abs{x}) \), y = f(|x|)

Functions, EXT1 F1 SM-Bank 12

Given  `f(x) = x^3 - x^2 - 2x`, without calculus sketch a separate half page graph of the following functions, showing all asymptotes and intercepts.

  1.   `y = |\ f(x)\ |`  (1 mark)

    --- 8 WORK AREA LINES (style=lined) ---

  2.   `y = f(|x|)`  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  3.    `y = 1/(f(x))`  (2 marks)

    --- 10 WORK AREA LINES (style=lined) ---

Show Answers Only
  1.  
  2.   
  3.   
Show Worked Solution
i.    `f(x)` `= x^3 – x^2 – 2x`
    `= x(x^2 – x – 2)`
    `= x(x – 2)(x + 1)`

 

 

ii.   

 
`y = f(|x|)\ text(is a reflection of)\ y = f(x)\ text(for)\ x > 0`

`text(is the)\ ytext(-axis.)`

 

iii.

Filed Under: Graphical Relationships, Reflections and Harder Graphs (Ext1) Tagged With: Band 3, Band 4, smc-1072-10-\(y=\dfrac{1}{f(x)}\), smc-1072-30-\(y=\abs{f(x)}; y=f(\abs{x}) \), smc-6640-10-\(y=\dfrac{1}{f(x)}\), smc-6640-30-\(y=\abs{f(x)}; y=f(\abs{x}) \), y = f(|x|)

Functions, EXT1′ F1 2014 HSC 12a

The diagram shows the graph of a function  `f(x)`.
 

Graphs, EXT2 2014 HSC 12a
 

Draw a separate half-page graph for each of the following, showing all asymptotes and intercepts.

  1.   `y = f(|\ x\ |)`  (2 marks)

    --- 10 WORK AREA LINES (style=lined) ---

  2.   `y = 1/(f(x))`  (2 marks)

    --- 10 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions.)`
  2. `text(See Worked Solutions.)`
Show Worked Solution
i.  

Graphs, EXT2 2014 HSC 12a Answer1

 

ii.  

Graphs, EXT2 2014 HSC 12a Answer2

Filed Under: Drawing graphs to powers, Graphical Relationships, Reflections and Harder Graphs (Ext1), Sketching - mult/division of ordinates Tagged With: Band 3, smc-1072-10-\(y=\dfrac{1}{f(x)}\), smc-1072-30-\(y=\abs{f(x)}; y=f(\abs{x}) \), smc-6640-10-\(y=\dfrac{1}{f(x)}\), smc-6640-30-\(y=\abs{f(x)}; y=f(\abs{x}) \), y = f(|x|)

Functions, EXT1 F1 2008 HSC 3a

  1.  Sketch the graph of  `y = |\ 2x - 1\ |`.   (1 mark)

    --- 8 WORK AREA LINES (style=lined) ---

  2.  Hence, or otherwise, solve  `|\ 2x - 1\ | <= |\ x - 3\ |`.    (3 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1.  
    Real Functions, EXT1 2008 HSC 3a Answer

  2. `-2 <= x <= 4/3`
Show Worked Solution
i.    Real Functions, EXT1 2008 HSC 3a Answer

 

ii.  `text(Solving for)\ \ |\ 2x – 1\ | <= |\ x – 3\ |`

`text(Graph shows the statement is TRUE)`

`text(between the points of intersection.)`
 

`=>\ text(Intersection occurs when)`

`(2x – 1)` `= (x – 3)\ \ \ text(or)\ \ \ ` `-(2x – 1)` `= x – 3`
`x` `= -2` `-2x + 1` `= x – 3`
    `-3x` `= -4`
    `x` `= 4/3`

 

`:.\ text(Solution is)\ \ {x: -2 <=  x <= 4/3}`

Filed Under: 1. Basic Arithmetic and Algebra EXT1, 4. Real Functions EXT1, Graphical Relationships, Inequalities, Inequalities (Ext1) Tagged With: Band 3, Band 4, smc-1033-20-Absolute Value, smc-1072-30-\(y=\abs{f(x)}; y=f(\abs{x}) \), smc-6640-30-\(y=\abs{f(x)}; y=f(\abs{x}) \), SMc-6643-20-Absolute Value, y = f(|x|)

Copyright © 2014–2026 SmarterEd.com.au · Log in