SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Polynomials, EXT1 EQ-Bank 11

The polynomial  \(R(x)=x^3+p x^2+q x+6\)  has a double zero at  \(x=-1\)  and a zero at  \(x=s\).

Find the values of \(p, q\) and \(s\).   (3 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

\(s=-6, \ p=8, \ q=13\)

Show Worked Solution

\(R(x)=x^3+p x^2+q x+6\)

\(R(x)\ \text{is monic with a zero at} \ s \ \text{and double zero at}\ -1:\)

\(R(x)\) \(=(x+1)^2(x-s)\)
  \(=\left(x^2+2 x+1\right)(x-s)\)
  \(=x^3+2 x^2+x-s x^2-2 s x-s\)
  \(=x^3+(2-s) x^2+(1-2 s) x-s\)

 

\(\text{Equating coefficients:}\)

\(-s=6 \ \Rightarrow \ s=-6\)

\(p=2-(-6)=8\)

\(q=1-2(-6)=13\)

Filed Under: Graphs of Polynomials Tagged With: Band 3, smc-6742-20-Degree/Coefficients, smc-6742-25-Multiplicity of Zeroes, syllabus-2027

Polynomials, EXT1 EQ-Bank 10

The polynomial  \(R(x)=2 x^4+a x^3+b x^2+c x+d\)  has a double zero at  \(x=1\), a zero at  \(x=-3\), and passes through the point \((0,-12)\).

Find the integer values of \(a, b, c, d\) and the fourth zero of the polynomial.   (4 marks)

--- 12 WORK AREA LINES (style=lined) ---

Show Answers Only

\(a=-2, \ b=-14, \ c=26, \ d=-12\)

\(\text{Fourth zero:} \ \ x=2\)

Show Worked Solution

\(R(x)=2 x^4+a x^3+b x^2+c x+d\)

\(\text{Since leading coefficient is 2 with a double zero at 1 and a zero at }-3:\)

\(R(x)=2(x-1)^2(x+3)(x-k) \ \ \text{where} \ k \ \text{is the fourth zero.}\)

\(\text{The polynomial passes through}\ (0,-12):\)

\(R(0)=2(0-1)^2(0+3)(0-k)=-12\ \ \Rightarrow\ \ k=2\)
 

\(\text{Expanding}\ R(x):\)

\(R(x)\) \(=2(x-1)^2(x+3)(x-2)\)  
  \(=2\left(x^2-2 x+1\right)(x+3)(x-2) \)  
  \(=2(x^3+3 x^2-2 x^2-6 x+x+3)(x-2) \)  
  \(=2(x^3+x^2-5 x+3)(x-2) \)  
  \(=2(x^4+x^3-5 x^2+3 x-2 x^3-2 x^2+10 x-6) \)  
  \(=2 x^4-2 x^3-14 x^2+26 x-12\)  

 

\(\text{Equating coefficients:}\)

\(a=-2, \ b=-14, \ c=26, \ d=-12\)

\(\text{Fourth zero:} \ \ x=2\)

Filed Under: Graphs of Polynomials Tagged With: Band 4, smc-6742-20-Degree/Coefficients, smc-6742-25-Multiplicity of Zeroes, syllabus-2027

Polynomials, EXT1 EQ-Bank 3

Consider the polynomial \(P(x)=x(3-x)^3\).

  1. State the degree of the polynomial and identify the leading coefficient.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Explain what happens to \(y\) as  \(x \rightarrow \pm \infty\).   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Without using calculus, sketch \(P(x)\) showing its general form and any \(x\)-intercepts.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(\text{Degree}\ P(x)=4\)

\(\text{Leading co-efficient}=-1\)
 

b.    \(\text{As} \ \ x \rightarrow-\infty,-x^4 \rightarrow-\infty, \ y \rightarrow-\infty\).

\(\text{As} \ \ x \rightarrow \infty,-x^4 \rightarrow-\infty, \ y \rightarrow-\infty\).
 

c.    \(P(x)\ \text{has zeroes at}\ \ x=0, 3:\)


       

Show Worked Solution

a.    \(\text{Degree}\ P(x)=4\)

\(\text{Leading co-efficient}=-1\)
 

b.    \(\text{As} \ \ x \rightarrow-\infty,-x^4 \rightarrow-\infty, \ y \rightarrow-\infty\).

\(\text{As} \ \ x \rightarrow \infty,-x^4 \rightarrow-\infty, \ y \rightarrow-\infty\).
 

c.    \(P(x)\ \text{has zeroes at}\ \ x=0, 3:\)


       

Filed Under: Graphs of Polynomials Tagged With: Band 3, smc-6742-20-Degree/Coefficients, smc-6742-30-\(x \rightarrow \pm \infty\), smc-6742-40-Sketch Graphs, syllabus-2027

Polynomials, EXT1 EQ-Bank 4

The polynomial  \(p(x) = x^3 + ax^2 + b\)  has a zero at \(r\) and a double zero at 4.

Find the values of \(a, b\) and \(r\).   (3 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(a =-6, b = 32, r = -2\)

Show Worked Solution

\(p(x) = x^3 + ax^2 + b\)

\(\text{Zero at \(r\) and double zero at 4:}\)

\(p(x)\) \(=(x-4)^2(x-r) \)  
  \(=(x^2-8x+16)(x-r)\)  
  \(=x^3-8x^2+16x-rx^2+8rx-16r\)  
  \(=x^3+(-8-r)x^2+(16+8r)x-16r\)  

 

\(\text{Equating coefficients:}\)

\(16+8r=0\ \ \Rightarrow \ \ r=-2\)

\(a=-8-(-2)=-6\)

\(b=-16 \times -2=32\)

Filed Under: Graphs of Polynomials Tagged With: Band 4, smc-6742-20-Degree/Coefficients, syllabus-2027

Copyright © 2014–2026 SmarterEd.com.au · Log in