The polynomial \(R(x)=x^3+p x^2+q x+6\) has a double zero at \(x=-1\) and a zero at \(x=s\).
Find the values of \(p, q\) and \(s\). (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
The polynomial \(R(x)=x^3+p x^2+q x+6\) has a double zero at \(x=-1\) and a zero at \(x=s\).
Find the values of \(p, q\) and \(s\). (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
\(s=-6, \ p=8, \ q=13\)
\(R(x)=x^3+p x^2+q x+6\)
\(R(x)\ \text{is monic with a zero at} \ s \ \text{and double zero at}\ -1:\)
| \(R(x)\) | \(=(x+1)^2(x-s)\) |
| \(=\left(x^2+2 x+1\right)(x-s)\) | |
| \(=x^3+2 x^2+x-s x^2-2 s x-s\) | |
| \(=x^3+(2-s) x^2+(1-2 s) x-s\) |
\(\text{Equating coefficients:}\)
\(-s=6 \ \Rightarrow \ s=-6\)
\(p=2-(-6)=8\)
\(q=1-2(-6)=13\)
The polynomial \(R(x)=2 x^4+a x^3+b x^2+c x+d\) has a double zero at \(x=1\), a zero at \(x=-3\), and passes through the point \((0,-12)\).
Find the integer values of \(a, b, c, d\) and the fourth zero of the polynomial. (4 marks)
--- 12 WORK AREA LINES (style=lined) ---
\(a=-2, \ b=-14, \ c=26, \ d=-12\)
\(\text{Fourth zero:} \ \ x=2\)
\(R(x)=2 x^4+a x^3+b x^2+c x+d\)
\(\text{Since leading coefficient is 2 with a double zero at 1 and a zero at }-3:\)
\(R(x)=2(x-1)^2(x+3)(x-k) \ \ \text{where} \ k \ \text{is the fourth zero.}\)
\(\text{The polynomial passes through}\ (0,-12):\)
\(R(0)=2(0-1)^2(0+3)(0-k)=-12\ \ \Rightarrow\ \ k=2\)
\(\text{Expanding}\ R(x):\)
| \(R(x)\) | \(=2(x-1)^2(x+3)(x-2)\) | |
| \(=2\left(x^2-2 x+1\right)(x+3)(x-2) \) | ||
| \(=2(x^3+3 x^2-2 x^2-6 x+x+3)(x-2) \) | ||
| \(=2(x^3+x^2-5 x+3)(x-2) \) | ||
| \(=2(x^4+x^3-5 x^2+3 x-2 x^3-2 x^2+10 x-6) \) | ||
| \(=2 x^4-2 x^3-14 x^2+26 x-12\) |
\(\text{Equating coefficients:}\)
\(a=-2, \ b=-14, \ c=26, \ d=-12\)
\(\text{Fourth zero:} \ \ x=2\)
Consider the polynomial \(P(x)=x(3-x)^3\).
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
The polynomial \(p(x) = x^3 + ax^2 + b\) has a zero at \(r\) and a double zero at 4.
Find the values of \(a, b\) and \(r\). (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(a =-6, b = 32, r = -2\)
\(p(x) = x^3 + ax^2 + b\)
\(\text{Zero at \(r\) and double zero at 4:}\)
| \(p(x)\) | \(=(x-4)^2(x-r) \) | |
| \(=(x^2-8x+16)(x-r)\) | ||
| \(=x^3-8x^2+16x-rx^2+8rx-16r\) | ||
| \(=x^3+(-8-r)x^2+(16+8r)x-16r\) |
\(\text{Equating coefficients:}\)
\(16+8r=0\ \ \Rightarrow \ \ r=-2\)
\(a=-8-(-2)=-6\)
\(b=-16 \times -2=32\)