SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Polynomials, EXT1 EQ-Bank 11

The polynomial  \(R(x)=x^3+p x^2+q x+6\)  has a double zero at  \(x=-1\)  and a zero at  \(x=s\).

Find the values of \(p, q\) and \(s\).   (3 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

\(s=-6, \ p=8, \ q=13\)

Show Worked Solution

\(R(x)=x^3+p x^2+q x+6\)

\(R(x)\ \text{is monic with a zero at} \ s \ \text{and double zero at}\ -1:\)

\(R(x)\) \(=(x+1)^2(x-s)\)
  \(=\left(x^2+2 x+1\right)(x-s)\)
  \(=x^3+2 x^2+x-s x^2-2 s x-s\)
  \(=x^3+(2-s) x^2+(1-2 s) x-s\)

 

\(\text{Equating coefficients:}\)

\(-s=6 \ \Rightarrow \ s=-6\)

\(p=2-(-6)=8\)

\(q=1-2(-6)=13\)

Filed Under: Graphs of Polynomials Tagged With: Band 3, smc-6742-20-Degree/Coefficients, smc-6742-25-Multiplicity of Zeroes, syllabus-2027

Polynomials, EXT1 EQ-Bank 10

The polynomial  \(R(x)=2 x^4+a x^3+b x^2+c x+d\)  has a double zero at  \(x=1\), a zero at  \(x=-3\), and passes through the point \((0,-12)\).

Find the integer values of \(a, b, c, d\) and the fourth zero of the polynomial.   (4 marks)

--- 12 WORK AREA LINES (style=lined) ---

Show Answers Only

\(a=-2, \ b=-14, \ c=26, \ d=-12\)

\(\text{Fourth zero:} \ \ x=2\)

Show Worked Solution

\(R(x)=2 x^4+a x^3+b x^2+c x+d\)

\(\text{Since leading coefficient is 2 with a double zero at 1 and a zero at }-3:\)

\(R(x)=2(x-1)^2(x+3)(x-k) \ \ \text{where} \ k \ \text{is the fourth zero.}\)

\(\text{The polynomial passes through}\ (0,-12):\)

\(R(0)=2(0-1)^2(0+3)(0-k)=-12\ \ \Rightarrow\ \ k=2\)
 

\(\text{Expanding}\ R(x):\)

\(R(x)\) \(=2(x-1)^2(x+3)(x-2)\)  
  \(=2\left(x^2-2 x+1\right)(x+3)(x-2) \)  
  \(=2(x^3+3 x^2-2 x^2-6 x+x+3)(x-2) \)  
  \(=2(x^3+x^2-5 x+3)(x-2) \)  
  \(=2(x^4+x^3-5 x^2+3 x-2 x^3-2 x^2+10 x-6) \)  
  \(=2 x^4-2 x^3-14 x^2+26 x-12\)  

 

\(\text{Equating coefficients:}\)

\(a=-2, \ b=-14, \ c=26, \ d=-12\)

\(\text{Fourth zero:} \ \ x=2\)

Filed Under: Graphs of Polynomials Tagged With: Band 4, smc-6742-20-Degree/Coefficients, smc-6742-25-Multiplicity of Zeroes, syllabus-2027

Polynomials, EXT1 EQ-Bank 9

A polynomial has the equation

\(Q(x)=(x+1)^2(x-2)\left(x^2+2 x-8\right)\)

  1. Express  \(Q(x)\)  as a product of linear factors and determine the multiplicity of each of its roots.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Hence, without using calculus, draw a sketch of \(y=Q(x)\), showing all  \(x\)-intercepts.   (2 marks)

    --- 12 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(Q(x) = (x+1)^2(x-2)\left(x^2+2 x-8\right) \)

\(\text{Roots:}\)

\(x=-1 \ \ \text{(multiplicity 2)}\)

\(x=2 \ \ \text{(multiplicity 2)}\)

\(x=4 \ \ \text{(multiplicity 1)}\)
 

b.

Show Worked Solution
a.     \(Q(x)\) \(=(x+1)^2(x-2)\left(x^2+2 x-8\right)\)
    \(=(x+1)^2(x-2)(x-2)(x+4)\)
    \(=(x+1)^2(x-2)^2(x-4)\)

 

\(\text{Roots:}\)

\(x=-1 \ \ \text{(multiplicity 2)}\)

\(x=2 \ \ \text{(multiplicity 2)}\)

\(x=4 \ \ \text{(multiplicity 1)}\)
 

b.    \(Q(x) \ \text{degree}=5, \ \text{Leading coefficient}=1\)

\(\text{As} \ \ x \rightarrow-\infty, y \rightarrow-\infty\)

\(\text{As} \ \ x \rightarrow \infty, y \rightarrow \infty\)

\(\text{At}\ \ x=0, \ y=1^2 \times (-2)^2 \times -4 = -16\)

Filed Under: Graphs of Polynomials Tagged With: Band 3, Band 4, smc-6742-25-Multiplicity of Zeroes, smc-6742-40-Sketch Graphs, syllabus-2027

Polynomials, EXT1 EQ-Bank 5

Consider the function  \(P(x)=(x-1)^2(x+2)\left(x^2+3 x-4\right)\)

  1. By expressing \(P(x)\) as a product of its linear factors, identify its zeroes and the multiplicity of each zero.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Without using calculus, draw a sketch of  \(y=P(x)\)  showing any \(x\)-intercepts.   (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(P(x)=(x-1)^3(x+2)(x+4)\)

\(\text{Roots:}\)

\(x=-2 \ \ \text{(multiplicity 1)}\)

\(x=-4 \ \ \text{(multiplicity 1)}\)

\(x=1 \ \ \text{(multiplicity 3)}\)
 

b.  

Show Worked Solution
a.     \(P(x)\) \(=(x-1)^2(x+2)\left(x^2+3 x-4\right)\)
    \(=(x-1)^2(x+2)(x-1)(x+4)\)
    \(=(x-1)^3(x+2)(x+4)\)

 
\(\text{Roots:}\)

\(x=-2 \ \ \text{(multiplicity 1)}\)

\(x=-4 \ \ \text{(multiplicity 1)}\)

\(x=1 \ \ \text{(multiplicity 3)}\)
 

b.    \(\text{Degree} \ P(x)=5, \ \ \text {Leading coefficient }=1\)

\(\text{As} \ \ x \rightarrow \infty, \ y \rightarrow \infty\)

\(\text{As} \ \ x \rightarrow -\infty, \ y \rightarrow -\infty\)

\(\text{At} \ \ x=0, y=-8\)
 

Filed Under: Graphs of Polynomials Tagged With: Band 3, Band 4, smc-6742-25-Multiplicity of Zeroes, smc-6742-40-Sketch Graphs, syllabus-2027

Polynomials, EXT1 EQ-Bank 1

A polynomial has the equation

\(P(x)=(x-1)(x-3)(x+2)^2\left(x^2-x-6\right)\).

  1. By expressing \(P(x)\) as a product of its linear factors, determine the multiplicity of each of the roots of  \(P(x)=0\).   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Hence, without using calculus, draw a sketch of  \(y=P(x)\)  showing all \(x\)-intercepts.   (2 marks)

    --- 12 WORK AREA LINES (style=blank) ---

Show Answers Only
a.     \(P(x)\) \(=(x-1)(x-3)(x+2)^2\left(x^2-x-6\right)\)
    \(=(x-1)(x-3)(x+2)^2(x-3)(x+2)\)
    \(=(x-1)(x-3)^2(x+2)^3\)

 

\(\text{Roots:}\)

\(x=1\ \text{(multiplicity 1)}\)

\(x=-2\ \text{(multiplicity 3)}\)

\(x=3\ \text{(multiplicity 2)}\)
 

b.
     

Show Worked Solution
a.     \(P(x)\) \(=(x-1)(x-3)(x+2)^2\left(x^2-x-6\right)\)
    \(=(x-1)(x-3)(x+2)^2(x-3)(x+2)\)
    \(=(x-1)(x-3)^2(x+2)^3\)

 

\(\text{Roots:}\)

\(x=1\ \text{(multiplicity 1)}\)

\(x=-2\ \text{(multiplicity 3)}\)

\(x=3\ \text{(multiplicity 2)}\)
 

b.
     

Filed Under: Graphs of Polynomials Tagged With: Band 3, Band 4, smc-6742-25-Multiplicity of Zeroes, smc-6742-40-Sketch Graphs, syllabus-2027

Copyright © 2014–2026 SmarterEd.com.au · Log in