SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, MET1 2019 VCAA 9

Consider the functions  `f: R -> R,\ \ f(x) = 3 + 2x-x^2`  and  `g: R -> R,\ \ g(x) = e^x`

  1. State the rule of `g(f(x))` .  (1 mark) 

    --- 2 WORK AREA LINES (style=lined) ---

  2. Find the values of `x` for which the derivative of `g(f(x))` is a negative.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. State the rule of `f(g(x))`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  4. Solve  `f(g(x)) = 0`.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  5. Find the coordinates of the stationary point of the graph of `f(g(x))`.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  6. State the number of solutions to  `g(f(x)) + f(g(x)) = 0`.  (1 mark)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `g(f(x)) = e^(3 + 2x-x^2)`
  2. `x > 1`
  3. `f(g(x)) = 3 + 2e^x-e^(2x)`
  4. `x = ln 3`
  5. `text(S.P. at)\ (0, 4)`
  6. `text(1 solution only)`
Show Worked Solution

a.   `g(f(x)) = e^(3 + 2x-x^2)`
 

b.   `d/(dx) g(f(x)) = (2-2x)e^(3 + 2x-x^2)`

`e^(3 + 2x-x^2) > 0\ \ text(for all)\ \ x`

`=> d/(dx) g(f(x)) < 0\  \text(when):`

`2-2x` `< 0`
`x` `> 1`

 
c.
   `f(g(x)) = 3 + 2e^x-e^(2x)`
 

d.   `e^(2x)-2e^x-3 = 0`

`text(Let)\ \ X = e^x`

`X^2-2X-3` `= 0`
`(X-3)(X + 1)` `= 0`

 
`X = 3 or -1`

`text(When)\ \ X = 3,\ \ e^x = 3 => x = ln 3`

`text(When)\ \ X = -1,\ \ e^x = -1 \ => \ text(no solution)`

`:. x = ln 3`
 

e.    `d/(dx)\ f(g(x))` `= 2e^x-2e^(2x)`
    `= 2e^x (1-e^x)`

 
`text(S.P. occurs when:)`

`2e^x(1-e^x)` `= 0`
`e^x` `= 1`
`x` `= 0`

 
`text(When)\ \ x = 0,`

`f(g(x))` `= 3 + 2-1=4`

 
`:.\ text(S.P. at)\ \ (0, 4)`
 

f.    `text(Solutions occur when)\ \ g(f(x)) = -f(g(x))`

`text{Sketch both graphs (using parts a-e):}`
 


 

`:. 1\ text(solution only)`

Filed Under: Curve Sketching Tagged With: Band 4, Band 5, Band 6, smc-724-35-Composite functions

Copyright © 2014–2025 SmarterEd.com.au · Log in