SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, MET1 SM-Bank 30

A function is given by  `f(x) = 3x^4 + 4x^3-12x^2`.

  1. Find the coordinates of the stationary points of  `f(x)`  and determine their nature.   (3 marks)

    --- 9 WORK AREA LINES (style=lined) ---

  2. Hence, sketch the graph  `y = f(x)`  showing the stationary points.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  3. For what values of `x` is the function increasing?   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  4. For what values of `k` will  `f(x) = 3x^4 + 4x^3-12x^2 + k = 0`  have no solution?   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(MAX at)\ (0,0)`
  2. `text(MIN at)\ text{(1,–5)}`
  3. `text(MIN at)\ text{(–2,–32)}`
  4. 2UA HSC 2012 14ai
     
  5. `f(x)\ text(is increasing for)\ -2 < x < 0\ text(and)\ x > 1`
  6. `text(No solution when)\ k > 32`
Show Worked Solution
i. `f(x)` `= 3x^4 + 4x^3 -12x^2`
  `f^{′}(x)` `= 12x^3 + 12x^2-24x`
  `f^{″}(x)` `= 36x^2 + 24x-24`

 

`text(Stationary points when)\ f prime (x) = 0`

`=> 12x^3 + 12x^2-24x` `=0`
`12x(x^2 + x-2)` `=0`
`12x (x+2) (x -1)` `=0`

 

`:.\ text(Stationary points at)\ x=0,\ 1\ text(or)\ –2`

`text(When)\ x=0,\ \ \ \ f(0)=0`
`f^{″}(0)` `= -24 < 0`
`:.\ text{MAX at  (0,0)}`

 

`text(When)\ x=1`

`f(1)` `= 3+4\-12 = -5`
`f^{″}(1)` `= 36 + 24\-24 = 36 > 0`
`:.\ text{MIN at  (1,–5)}`

 

`text(When)\ x=–2`

`f(–2)` `=3(–2)^4 + 4(–2)^3-12(–2)^2`
  `= 48 -32\-48`
  `= -32`
`f^{″}(–2)` `= 36(–2)^2 + 24(–2) -24`
  `=144-48-24 = 72 > 0`
`:.\ text{MIN at  (–2,–32)}`

 

ii.  2UA HSC 2012 14ai

 

♦ Mean mark (HSC) 42%
MARKER’S COMMENT: Be careful to use the correct inequality signs, and not carelessly include `>=` or `<=` by mistake.

 

iii. `f(x)\ text(is increasing for)`
  `-2 < x < 0\ text(and)\ x > 1`

 

iv.   `text(Find)\ k\ text(such that)`

♦♦♦ Mean mark (HSC) 12%.

`3x^4 + 4x^3-12x^2 + k = 0\ \ text(has no solution)`

`k\ text(is the vertical shift of)\ \ y = 3x^4 + 4x^3-12x^2`

`=>\ text(No solution if it does not cross the)\ x text(-axis.)`

`:.\ text(No solution when)\ \ k > 32`

Filed Under: Curve Sketching Tagged With: Band 4, Band 5, Band 6, smc-724-20-Degree 4, smc-724-60-Increasing/Decreasing intervals

Calculus, MET2 2007 VCAA 13 MC

For the graph of  `y = 4x^3 + 27x^2-30x + 10`  the subset of `R` for which the gradient is negative is given by the interval

  1. `(0.5, 5.0)`
  2. `(-4.99, 0.51)`
  3. `(-oo, 1/2)`
  4. `(-5, 1/2)`
  5. `(2.25, oo)`
Show Answers Only

`D`

Show Worked Solution
`y` `=4x^3 + 27x^2 – 30x + 10`
`y′` `=12x^2 + 54x – 30`

 

`text(Sketch the graph:)`

vcaa-2007-meth2-13

`:.\ text(Gradient is negative for)\ \  x in (– 5, 1/2).`

`=>   D`

Filed Under: Curve Sketching Tagged With: Band 4, smc-724-60-Increasing/Decreasing intervals

Copyright © 2014–2025 SmarterEd.com.au · Log in