The graph of `y = log_e(x) + log_e(2x)`, where `x > 0`, is identical, over the same domain, to the graph of
- `y = 2log_e(1/2x)`
- `y = 2log_e(2x)`
- `y = log_e(2x^2)`
- `y = log_e(3x)`
- `y = log_e(4x)`
Aussie Maths & Science Teachers: Save your time with SmarterEd
The graph of `y = log_e(x) + log_e(2x)`, where `x > 0`, is identical, over the same domain, to the graph of
`C`
`text(Using log laws:)`
`log_e (x) + log_e (2x) = log_e (2x^2) \ \ text{for} \ \ x > 0`
`=> C`
Solve the equation `2 log_2(x + 5) - log_2(x + 9) = 1`. (3 marks)
`x = text{−1}`
`2 log_2(x + 5) – log_2(x + 9)` | `= 1` |
`log_2(x + 5)^2 – log_2(x + 9)` | `= 1` |
`log_2(((x + 5)^2)/(x + 9))` | `= 1` |
`((x + 5)^2)/(x + 9)` | `= 2` |
`x^2 + 10x + 25` | `= 2x + 18` |
`x^2 + 8x + 7` | `= 0` |
`(x + 7)(x + 1)` | `= 0` |
`:. x = −1\ \ \ \ (x != text{−7}\ \ text(as)\ \ x > text{−5})`
Solve `log_3(t) - log_3(t^2 - 4) = -1` for `t`. (3 marks)
`4 `
`log_3(t) – log_3(t^2 – 4)` | `= -1` |
`log_3 ({t}/{t^2 – 4})` | `= -1` |
`(t)/(t^2 – 4)` | `= (1)/(3)` |
`t^2 – 4` | `= 3t` |
`t^2 – 3t – 4` | `= 0` |
`(t – 4)(t+ 1)` | `= 0` |
`:. t=4 \ \ \ (t > 0, \ t!= –1)`
If `2log_e(x) - log_e(x + 2) = log_e(y)`, then `x` is equal to
`A`
`2log_e x – log_e(x + 2)` | `= log_e y` |
`log_e ({x^2}/{x + 2})` | `= log_e y` |
`y = (x^2)/(x + 2)`
`text(S) text(olve for) \ x :`
`x = (y + sqrt(y^2 + 8y))/(2) \ \ text(only,) \ \ ((y – sqrt{y^2 + 8y})/(2) < 0) `
`=> \ A`
Which expression is equivalent to `4 + log_2 x?`
`D`
`4 + log_2 x` | `= log_2 16 + log_2 x` |
`= log_2 16 x` |
`=> D`
Solve the equation `log_e(3x + 5) + log_e(2) = 2`, for `x`. (2 marks)
`x = (e^2 – 10)/6`
`text(Simplify using log laws:)`
`log_e(6x + 10)` | `=2` |
`6x +10` | `=e^2` |
`:.x` | `= (e^2 – 10)/6` |
Solve the equation `2 log_e (x) - log_e (x + 3) = log_e (1/2)` for `x.` (4 marks)
`:. x = 3/2`
`text(Simplify using log laws:)`
`log_e (x^2) – log_e (x + 3)` | `= log_e (1/2)` |
`log_e (x^2/(x + 3))` | `= log_e (1/2)` |
`x^2/(x + 3)` | `= 1/2` |
`2x^2` | `= x + 3` |
`2x^2 – x – 3` | `= 0` |
`(2x – 3) (x + 1)` | `= 0` |
`:. x = 3/2,\ \ \ x > 0`
Solve the equation `2 log_e (x + 2) - log_e(x) = log_e (2x + 1)`, where `x > 0`, for `x.` (3 marks)
`x = 4`
`text(Simplify using log laws:)`
`log_e (x + 2)^2 – log_e (x)` | `= log_e (2x + 1)` |
`log_e ((x + 2)^2/x)` | `= log_e (2x + 1)` |
`(x + 2)^2/x` | `= 2x + 1` |
`x^2 + 4x + 4` | `= 2x^2 + x` |
`x^2-3x-4` | `= 0` |
`(x-4)(x+1)` | `= 0` |
`x` | `= 4 or -1,\ \ text(but)\ x > 0` |
`:. x` | `= 4` |
Solve the equation `2 log_3(5) - log_3 (2) + log_3 (x) = 2` for `x`. (2 marks)
`log_3 (5)^2 – log_3 (2) + log_3 (x)` | `= 2` | |
`log_3 (25x) – log_3 (2)` | `=2` | |
`log_3 ((25 x)/2)` | `= 2` | |
`(25x)/2` | `= 3^2` | |
`:. x` | `= 18/25` |
Solve `log_e(x) - 3 = log_e(sqrtx)` for `x`, where `x > 0`. (2 marks)
`e^6`
`text(Simplify using log laws:)`
`log_e(x) – log_e(sqrtx)` | `= 3` |
`log_e(x/sqrtx)` | `= 3` |
`x/sqrtx xx sqrtx/sqrtx` | `=e^3` |
`sqrt x` | `= e^3` |
`:. x` | `= e^6` |
Solve `log_2(6 - x) - log_2(4 - x) = 2` for `x`, where `x < 4`. (2 marks)
`10/3`
`text(Simplify using log laws:)`
`log_2((6 – x)/(4 – x))` | `= 2` |
`2^2` | `= (6 – x)/(4 – x)` |
`16 – 4x` | `= 6 – x` |
`3x` | `= 10` |
`:. x` | `= 10/3` |
Let `g(x) = log_2(x),\ \ x > 0`
Which one of the following equations is true for all positive real values of `x?`
`B`
`text(Consider Option)\ B:`
`text(LHS)` | `= 2g(8x)` |
`= 2log_2(8x)` | |
`= 2log_2(8) + 2log_2(x)` | |
`=2log_2 (2^3)+ 2log_2(x)` | |
`= 6 + log_2(x^2)` | |
`= g(x^2) + 6` |
`=> B`