SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, MET1 2024 VCAA 6

Solve  \(2 \log _3(x-4)+\log _3(x)=2\)  for \(x\).   (4 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\dfrac{7 + \sqrt{13}}{2}\)

Show Worked Solution

\(2\log_3(x-4)+\log_3(x)\) \(=2\)
\(\log_3x(x-4)^2\) \(=2\)
\(x(x-4)^2\) \(=3^2\)
\(x(x^2-8x+16)-9\) \(=0\)
\(x^3-8x^2+16x-9\) \(=0\)

 
\(\text{Find a factor}\ \ \Rightarrow\ \ \text{Test}\ \ x=1:\)

\(1^3-8(1)^2+16(1)-9=0\)

\(\therefore\ x-1\ \text{is a factor} \)

♦♦ Mean mark 36%.

\((x-1)(x^2-7x+9)=0\)
  

\(\text{Using quadratic formula to solve}\ \ x^2-7x+9=0:\)

\(x\) \(=\dfrac{-(-7)\pm\sqrt{(-7)^2-4(1)(9)}}{2(1)}\)
  \(=\dfrac{7\pm \sqrt{49-36}}{2}\)
  \(=\dfrac{7\pm \sqrt{13}}{2}\)

\( x=1, \dfrac{7- \sqrt{13}}{2}, \dfrac{7 + \sqrt{13}}{2}\)

  
\(\text{For }\log_3(x-4)\ \text{to exist}\ x>4\)

\(\therefore\ \dfrac{7 + \sqrt{13}}{2}\ \text{ is the only possible solution.}\)

Filed Under: Log/Index Laws and Equations, Polynomials Tagged With: Band 5, smc-726-10-Log - Product/Quotient Rule, smc-726-20-Log - Power Rule, smc-750-10-Factor Theorem, smc-750-50-Cubics

Algebra, MET1 SM-Bank 8

Write `log2 + log4 + log8 + log16 + … + log128`  in the form  `a logb`  where `a` and `b` are integers greater than 1.  (2 marks)

Show Answers Only

`28log2`

Show Worked Solution

`log2 + log4 + log8 + … + log 128`

`= log2^1 + log2^2 + log2^3 + … + log2^7`

`= log2 + 2log2 + 3log2 + … + 7log2`

`= 28log2`

Filed Under: Log/Index Laws and Equations Tagged With: Band 4, smc-726-20-Log - Power Rule

Algebra, MET2 SM-Bank 1 MC

Let  `a = e^x`

Which expression is equal to  `log_e(a^2)`?

  1. `e^(2x)`
  2. `e^(x^2)`
  3. `2x`
  4. `x^2`
  5. `e^2`
Show Answers Only

`C`

Show Worked Solution
`log_e(a^2)` `= log_e(e^x)^2`
  `= log_e(e^(2x))`
  `= 2xlog_e e`
  `= 2x`

`=> C`

Filed Under: Log/Index Laws and Equations Tagged With: Band 4, smc-726-20-Log - Power Rule

Algebra, MET2 2010 VCAA 8 MC

The function  `f` has rule  `f(x) = 3 log_e (2x).`

If  `f(5x) = log_e (y)`  then `y` is equal to

  1. `30x`
  2. `6x`
  3. `125x^3`
  4. `50x^3`
  5. `1000x^3`
Show Answers Only

`E`

Show Worked Solution
`f(5x)` `= 3 log_e (2(5x))`
`log_e (y)` `= 3 log_e (10 x)`
  `= log_e (10x)^3`
`y` `= 1000 x^3`

 
`=>   E`

Filed Under: Log/Index Laws and Equations Tagged With: Band 3, smc-726-20-Log - Power Rule

Copyright © 2014–2025 SmarterEd.com.au · Log in