Given that `log_(2)(n+1)=x`, the values of `n` for which `x` is a positive integer are
- `n=2^(k),k inZ^(+)`
- `n=2^(k)-1,k inZ^(+)`
- `n=2^(k-1),k inZ^(+)`
- `n=2k-1,k inZ^(+)`
- `n=2k,k inZ^(+)`
Aussie Maths & Science Teachers: Save your time with SmarterEd
Given that `log_(2)(n+1)=x`, the values of `n` for which `x` is a positive integer are
`B`
`text(If)\ \ x in ZZ^+ ,`
`log_2(n+1)` | `in ZZ^+` | |
`n+1` | `=2^k\ \ text(for)\ \ k in ZZ^+` | |
`n` | `=2^k -1` |
`=>B`
Solve the equation `log_2(x-1) = 8` for `x`. (2 marks)
`257`
`log_2(x-1)` | `=8` | |
`x-1` | `= 2^8` | |
`x-1` | `= 256` | |
`:. x` | `= 257` |
If `y = log_a (7x - b) + 3`, then `x` is equal to
`C`
`y – 3` | `= log_a (7x – b)` |
`a^(y – 3)` | `= 7x – b` |
`a^(y – 3) + b` | `= 7x` |
`:. x` | `= 1/7 (a^(y – 3) + b)` |
`=> C`
Solve the equation `log_e x-3/log_ex=2` for `x`. (3 marks)
`x=e^3\ \ text(or)\ \ e^-1`
`log_e x-3/(log_ex)` | `=2` |
`(log_ex)^2-3` | `=2log_e x` |
`(log_ex)^2-2log_ex-3` | `=0` |
`text(Let)\ X=log_ex` | |
`:.\ X^2-2X-3` | `=0` |
`(X-3)(X+1)` | `=0` |
`X` | `=3` | `\ \ \ \ \ \ \ \ \ \ ` | `X` | `=-1` |
`log_ex` | `=3` | `\ \ \ \ \ \ \ \ \ \ ` | `log_ex` | `=-1` |
`x` | `=e^3` | `\ \ \ \ \ \ \ \ \ \ ` | `x` | `=e^-1` |
`:.x=e^3\ \ text(or)\ \ e^-1`