Let `y=3xe^{2x}`.
Find `\frac{dy}{dx}`. (1 mark)
--- 3 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `y=3xe^{2x}`.
Find `\frac{dy}{dx}`. (1 mark)
--- 3 WORK AREA LINES (style=lined) ---
`6xe^(2x) + 3e^(2x)`
Using the product rule, given `y=3xe^{2x}`
| `\frac{dy}{dx}` | `=3x xx 2e^(2x)+3 xx e^(2x)` | |
| `=6xe^(2x) + 3e^(2x)` |
Let \(f(x)=\sin(x)e^{2x}\).
Find \(f^{'}\Big(\dfrac{\pi}{4}\Big)\). (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\dfrac{3\sqrt{2}}{2}e^{\frac{\pi}{2}}\ \text{or}\ \dfrac{3e^{\frac{\pi}{2}}}{\sqrt{2}}\)
\(\text{Using the product rule}\)
| \(f'(x)\) | \(=e^{2x}\cos(x)+2e^{2x}\sin(x)\) |
| \(=e^{2x}\Big(\cos(x)+2\ \sin(x)\Big)\) | |
| \(\therefore\ f’\Big(\dfrac{\pi}{4}\Big)\) | \(=e^{2(\frac{\pi}{4})}\Bigg(\cos(\dfrac{\pi}{4})+2\ \sin(\dfrac{\pi}{4})\Bigg)\) |
| \(=e^{\frac{\pi}{2}}\Bigg(\dfrac{1}{\sqrt{2}}+\sqrt{2}\Bigg)\) | |
| \(=e^{\frac{\pi}{2}}\Bigg(\dfrac{1+\sqrt2 \times \sqrt2}{\sqrt2} \Bigg) \) | |
| \(=\dfrac{3\sqrt{2}}{2}e^{\frac{\pi}{2}}\ \ \text{or}\ \ \dfrac{3e^{\frac{\pi}{2}}}{\sqrt{2}}\) |
Let `y= (x + 5) log_e (x)`.
Find `(dy)/(dx)` when `x = 5`. (2 marks)
`log_e 5 +2`
| `(dy)/(dx)` | `= 1 xx log_e x + (x + 5) * (1)/(x)` |
| `= log_e x + (x + 5)/(x)` |
`:. dy/dx|_(x=5)=log_e 5 +2`
Let `f(x) = xe^(3x)`. Evaluate `f^{prime}(0)`. (3 marks)
--- 4 WORK AREA LINES (style=lined) ---
`1`
`text(Using Product Rule:)`
`(gh)^{prime} = g^{prime}h + gh^{prime}`
| `f^{prime}(x)` | `= x(3e^(3x)) + 1 xx e^(3x)` |
| `:.f^{prime}(0)` | `= 0 + e^0` |
| `= 1` |
Differentiate with respect to `x`
`(x-1)log_e x` (2 marks)
--- 3 WORK AREA LINES (style=lined) ---
`log_e x + 1-1/x`
| `y` | `= (x-1) log_e x` |
| `(dy)/(dx)` | `= 1(log_e x) + (x-1) 1/x` |
| `= log_e x + 1-1/x` |
Differentiate with respect to `x`:
`x^2log_ex` (2 marks)
--- 3 WORK AREA LINES (style=lined) ---
`x + 2xlog_ex`
| `y` | `= x^2 log_e x` |
| `(dy)/(dx)` | `= x^2 · 1/x + 2x · log_ex` |
| `= x + 2xlog_ex` |
Let `f(x) = x^2e^(5x)`.
Evaluate `f^{\prime}(1)`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`7e^5`
`text(Using Product Rule:)`
| `(fg)^{\prime}` | `= f^{\prime}g + fg^{\prime}` |
| `f^{′}(x)` | `= 2xe^(5x) + 5x^2 e^(5x)` |
| `f^{′}(1)` | `= 2(1)e^(5(1)) + 5(1)^2 e^(5(1))` |
| `= 7e^5` |
For `y = e^(2x) cos (3x)` the rate of change of `y` with respect to `x` when `x = 0` is
`B`
| `y` | `= e^(2x) cos (3x)` |
| `dy/dx` | `=e^(2x) xx -3sin(3x) + 2e^(2x) xx cos (3x)` |
| `=e^(2x)(-3sin(3x) + 2cos(3x))` |
`text(When)\ \ x = 0,`
`dy/dx= 2`
`=> B`
Differentiate `x log_e (x)` with respect to `x`. (2 marks)
--- 3 WORK AREA LINES (style=lined) ---
`log_e (x) + 1`
`text(Using Product rule:)`
| `(fg)^{\prime}` | `= f^{\prime}g + fg^{\prime}` |
| `d/(dx) (x log_e (x))` | `= 1 xx log_e (x) + x (1/x)` |
| `= log_e (x) + 1` |
Differentiate `x^3 e^(2x)` with respect to `x`. (2 marks)
--- 3 WORK AREA LINES (style=lined) ---
`3x^2 e^(2x) + 2x^3 e^(2x)`
`text(Using Product rule:)`
| `(fg)^{prime}` | `= f^{prime}g + fg^{prime}` |
| `d/(dx) (x^3 e^(2x))` | `= 3x^2 e^(2x) + 2x^3 e^(2x)` |
If `y = x^2 log_e (x)`, find `(dy)/(dx)`. (2 marks)
--- 3 WORK AREA LINES (style=lined) ---
`2x log_e (x) + x`
`text(Using Product Rule:)`
| `(fg)^{\prime}` | `= f^{prime} g + f g^{prime}` |
| `(dy)/(dx)` | `= 2x log_e (x) + x^2 (1/x)` |
| `= 2x log_e (x) + x` |