Find and simplify the rule of `f^{\prime}(x)`, where `f:R \rightarrow R, f(x)=\frac{\cos (x)}{e^x}`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find and simplify the rule of `f^{\prime}(x)`, where `f:R \rightarrow R, f(x)=\frac{\cos (x)}{e^x}`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`\frac{-(\sin x+\cos x)}{e^x}`
Using the quotient rule
`f(x)` | `=\frac{\cos (x)}{e^x}` | |
`f^{\prime}(x)` | `=\frac{-e^x \sin x-e^x \cos x}{e^{2 x}}` | |
`= \frac{-e^x(\sin x+\cos x)}{e^{2 x}}` | ||
`=\frac{-(\sin x+\cos x)}{e^x}` |
Let \(y=\dfrac{x^2-x}{e^x}\).
Find and simplify \(\dfrac{dy}{dx}\). (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
\(-\Bigg(\dfrac{x^2-3x+1}{e^x}\Bigg) \)
\(\text{Using the quotient rule:}\)
\(\dfrac{dy}{dx}\) | \(=\dfrac{e^x(2x-1)-(x^2-x)e^x}{(e^x)^2}\) |
\(=\dfrac{e^x(-x^2+3x-1)}{e^{2x}}\) | |
\(=\dfrac{-x^2+3x-1}{e^x}\) |
Let `f(x) = (e^x)/((x^2 - 3))`.
Find `f′(x)`. (2 marks)
`{e^x(x^2 – 2x – 3)}/{(x^2 – 3)^2}`
`text(Let) \ \ u = e^x \ \ => \ \ u′ = e^x`
`v = (x^2 – 3) \ \ => \ \ v′ = 2x`
`f′(x)` | `= {e^x(x^2 – 3) – 2x e^x}/{(x^2 – 3)^2}` |
`= {e^x(x^2 – 2x – 3)}/{(x^2 – 3)^2}` |
Let `y = (2e^(2x) - 1)/e^x`.
Find `(dy)/(dx)`. (2 marks)
`(dy)/(dx) = 2e^x + e^(-x)`
`text(Method 1)`
`y` | `= 2e^x – e^(-x)` |
`(dy)/(dx)` | `= 2e^x + e^(-x)` |
`text(Method 2)`
`(dy)/(dx)` | `= (4e^(2x) ⋅ e^x – (2e^(2x) – 1) e^x)/(e^x)^2` |
`= (4e^(3x) – 2e^(3x) + e^x)/e^(2x) ` | |
`= (2e^(2x) + 1)/e^x` |
Let `f(x) = (e^x)/(cos(x))`.
Evaluate `f′(pi)`. (2 marks)
`text(See Worked Solutions)`
`f′(x) = (e^x)/(cos(x))`
`u` | `= e^x` | `v` | `= cos(x)` |
`u′` | `= e^x` | `v′` | `= −sin(x)` |
`f′(x)` | `= (u′v – uv′)/(v^2)` |
`= (e^x · cos(x) + e^x sin(x))/(cos^2(x))` |
`f′(pi)` | `= (e^pi · cospi + e^pi sinpi)/(cos^2 pi)` |
`= (e^pi(−1) + e^pi · 0)/((−1)^2)` | |
`= −e^pi` |
Let `f(x) = (log_e(x))/(x^2)`.
i. `text(Using Quotient Rule:)`
`(h/g)′` | `= (h′g – hg′)/(g^2)` |
`f′(x)` | `= ((1/x)x^2 – log_e(x)*2x)/(x^4)` |
`= (1 – 2log_e(x))/(x^3)` |
ii. | `f′(1)` | `= (1 – 2log_e(1))/(1^3)` |
`= 1` |
Differentiate with respect to `x`:
`(2x)/(e^x + 1)` (2 marks)
`(2(e^x + 1 – xe^x))/((e^x + 1)^2)`
`y = (2x)/(e^x + 1)`
`u` | `= 2x` | `v` | `= e^x + 1` |
`u′` | `= 2` | `v′` | `= e^x` |
`(dy)/(dx)` | `= (u′v – uv′)/(v^2)` |
`= (2(e^x + 1) – 2x(e^x))/((e^x + 1)^2)` | |
`= (2e^x + 2 – 2x · e^x)/((e^x + 1)^2)` | |
`= (2(e^x + 1 – xe^x))/((e^x + 1)^2)` |