Find and simplify the rule of `f^{\prime}(x)`, where `f:R \rightarrow R, f(x)=\frac{\cos (x)}{e^x}`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find and simplify the rule of `f^{\prime}(x)`, where `f:R \rightarrow R, f(x)=\frac{\cos (x)}{e^x}`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`\frac{-(\sin x+\cos x)}{e^x}`
Using the quotient rule
`f(x)` | `=\frac{\cos (x)}{e^x}` | |
`f^{\prime}(x)` | `=\frac{-e^x \sin x-e^x \cos x}{e^{2 x}}` | |
`= \frac{-e^x(\sin x+\cos x)}{e^{2 x}}` | ||
`=\frac{-(\sin x+\cos x)}{e^x}` |
Differentiate with respect to `x`:
Let `y=sin x/(x + 1)`. Find `dy/dx `. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`dy/dx = {cos x (x + 1)-sin x} / (x + 1)^2`
`y = sinx/(x + 1)`
`d/dx (u/v) = (u^{\prime} v-uv^{\prime})/v^2`
`u` | `= sin x` | `v` | `= x + 1` |
`u^{\prime}` | `= cos x` | `\ \ \ v^{\prime}` | `= 1` |
`:.dy/dx = {cos x (x + 1)-sin x} / (x + 1)^2`
Let `g: R text(\ {−1}) -> R,\ \ g(x) = (sin(pi x))/(x + 1)`.
Evaluate `g^{prime}(1)`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`-pi/2`
`u = sin(pi x)` | `v = x + 1` | |
`u^{prime}=pi cos(pi x)` | `v^{prime}=1` |
`g^{prime}(x)` | `=(vu^{prime}-uv^{prime})/v^2` |
`= ((x + 1) ⋅ pi cos(pi x)-sin (pi x))/(x + 1)^2` | |
`g^{prime}(1)` | `= (2 pi cos(pi)-sin(pi))/2^2` |
`= (2 pi(-1)-0)/4` | |
`= -pi/2` |
Let `f(x) = (e^x)/(cos(x))`.
Evaluate `f^{prime}(pi)`. (2 marks)
--- 7 WORK AREA LINES (style=lined) ---
`text(See Worked Solutions)`
`f^{prime}(x) = (e^x)/(cos(x))`
`u` | `= e^x` | `v` | `= cos(x)` |
`u^{prime}` | `= e^x` | `v^{prime}` | `=-sin(x)` |
`f^{prime}(x)` | `= (u^{prime}v-uv^{prime})/(v^2)` |
`= (e^x · cos(x) + e^x sin(x))/(cos^2(x))` |
`f^{prime}(pi)` | `= (e^pi · cospi + e^pi sinpi)/(cos^2 pi)` |
`= (e^pi(-1) + e^pi · 0)/((-1)^2)` | |
`= -e^pi` |
If `f(x) = x/(sin(x))`, find `f^{prime}(pi/2).` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`1`
`text(Using Quotient Rule:)`
`(h/g)^{prime}` | `= (h^{prime}g-h g^{prime})/g^2` |
`f^{prime}(x)` | `= (1 xx sin (x)-x cos (x))/(sin x)^2` |
`:. f^{prime}(pi/2)` | `= (sin (pi/2)-pi/2 xx cos (pi/2))/(sin(pi/2))^2` |
`= (1-0)/1^2` | |
`= 1` |
For `f(x) = (cos(x))/(2x + 2)` find `f prime (pi)`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`1/(2 (pi + 1)^2)`
`text(Using Quotient Rule:)`
`(g/h)^{prime}` | `= (g^{prime} h – gh^{prime})/h^2` |
`f^{prime}(x)` | `= (-sin (x) (2x + 2)-2 cos (x))/(2x + 2)^2` |
`:. f^{prime}(pi)` | `= (-sin (pi) (2pi + 2)-2 cos (pi))/(2pi + 2)^2` |
`= (0-2 (-1))/[2 (pi + 1)]^2` | |
`= 2/(4(pi + 1)^2)` | |
`= 1/(2 (pi + 1)^2)` |
Let `y = (cos(x))/(x^2 + 2)`.
Find `(dy)/(dx)`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`(-x^2sin(x)-2sin(x)-2xcos(x))/((x^2 + 2)^2)`
`text(Using Quotient Rule:)`
`(h/g)^{prime}` | `= (h^{prime}g-hg^{prime})/(g^2)` |
`(dy)/(dx)` | `= (-sin(x)(x^2 + 2)-cos(x)(2x))/((x^2 + 2)^2)` |
`= (-x^2sin(x)-2sin(x)-2xcos(x))/((x^2 + 2)^2)` |
Let `f(x) = (x^3)/(sin(x))`. Find `f^{′}(x)`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`(3x^2sin(x)-x^3cos(x))/(sin^2(x))`
`f(x) = (x^3)/(sin(x))`
`text(Using Quotient Rule:)`
`d/(dx)(u/v) = (vu^{prime}-uv^{prime})/(v^2)`
`:. f^{prime}(x) = (3x^2sin(x)-x^3cos(x))/(sin^2(x))`