Differentiate `y = 2e^(−3x)` with respect to `x`. (1 mark)
Calculus, MET1 2013 VCAA 1b
Let `f(x) = e^(x^2)`.
Find `f^{\prime} (3)`. (3 marks)
Calculus, MET1 2010 VCAA 1b
For `f(x) = log_e (x^2 + 1)`, find `f^{\prime}(2)`. (2 marks)
Calculus, MET1 2009 ADV 2b
Let `y=ln(3x^3 + 2)`.
Find `dy/dx`. (2 marks)
Calculus, MET1 2020 VCAA 1b
Evaluate `f′(1)`, where `f: R -> R, \ f(x) = e^(x^2 - x + 3)`. (2 marks)
Calculus, MET1 2015 ADV 11e
Differentiate `(e^x + x)^5`. (2 marks)
Calculus, MET1 2009 ADV 2a
Differentiate `(e^x + 1)^2` with respect to `x`. (2 marks)
Calculus, MET1 2016 VCAA 1b
Let `f(x) = x^2e^(5x)`.
Evaluate `f′(1)`. (2 marks)
Calculus, MET2 2009 VCAA 7 MC
For `y = e^(2x) cos (3x)` the rate of change of `y` with respect to `x` when `x = 0` is
- `0`
- `2`
- `3`
- `– 6`
- `– 1`
Calculus, MET2 2011 VCAA 4 MC
The derivative of `log_e(2f(x))` with respect to `x` is
- `(f′(x))/(f(x))`
- `2(f′(x))/(f(x))`
- `(f′(x))/(2f(x))`
- `log_e(2f′(x))`
- `2log_e(2f′(x))`