Let `g:\left(\frac{3}{2}, \infty\right) \rightarrow R, g(x)=\frac{3}{2 x-3}`
Find the rule for an antiderivative of `g(x)`. (1 mark)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `g:\left(\frac{3}{2}, \infty\right) \rightarrow R, g(x)=\frac{3}{2 x-3}`
Find the rule for an antiderivative of `g(x)`. (1 mark)
--- 5 WORK AREA LINES (style=lined) ---
`\frac{3}{2} \log _e(2 x-3)`
`\int \frac{3}{2 x-3} d x` | `=frac{3}{2}\int \frac{2}{2 x-3} d x` | |
`=\frac{3}{2} \log _e(2 x-3)` |
Notes:
→ As the domain is `\left(\frac{3}{2}, \infty\right)` the natural log to the base `e` is used
→ A constant is not required in the solution as the question only asks for AN antiderivative not a family of solutions.
Let `f: (1/3, oo) -> R,\ \ f(x) = 1/(3x - 1)`.
Find an antiderivative of `f(x)`. (1 mark)
`1/3 ln(3x – 1)`
`int 1/(3x – 1)\ dx` | `= 1/3 int 3/(3x – 1)\ dx` | |
`= 1/3 ln (3x – 1)` |
The derivative with respect to `x` of the function `f:(1,∞) -> R` has the rule `f′(x) = 1/2 - 1/(2x - 2)`.
Given that `f(2) = 0`, find `f(x)` in terms of `x`. (3 marks)
`f(x) =1/2[x – ln(x – 1)] – 1`
`fprime(x) = 1/2 – 1/(2x – 2)`
`f(x)` | `= int(1/2 – 1/(2x -2))\ dx` |
`= 1/2 int(1 – 1/(x – 1))\ dx` | |
`= 1/2[x – ln|x – 1|] + c` |
`text(Given)\ \ f(2) = 0,`
`0 = 1/2(2 – ln 1) + c`
`c = −1`
`:. f(x) = 1/2[x – ln|x – 1|] – 1`
If `f′(x)= (x^2)/(x^3 + 1)` and `f(1)= log_e 2,` find `f(x)`. (3 marks)
`f(x) = 1/3 log_e(x^3 + 1) + 2/3 log_e 2`
`f(x)` | `=int f′(x)\ dx` |
`=int (x^2)/(x^3 + 1)\ dx` | |
`= 1/3 int (3x^2)/(x^3 + 1)\ dx` | |
`=1/3 log_e |(x^3 + 1)|+c` |
`text(S)text(ince)\ \ f(1)= log_e 2,`
`1/3 log_e 2+c` | `= log_e 2` |
`c` | `=2/3 log_e 2` |
`:.\ f(x) = 1/3 log_e(x^3 + 1) + 2/3 log_e 2`
Let `f′(x) = 1 - 3/x`, where `x != 0`.
Given that `f(e) = −2`, find `f(x)`. (3 marks)
`x – 3log_e(x) + 1 – e`
`f(x)` | `= int 1 – 3x^(−1) dx` |
`f(x)` | `= x – 3log_e |\ x\ | + c` |
`text(Substitute)\ \ f(e) = − 2,`
`−2` | `= e – 3log_e(e) + c` |
`c` | `= 1- e` |
`:. f(x) = x – 3log_e|\ x\ | + 1 – e`