If `m = int_1^3 (2)/(x)\ dx`, then the value of `e^m` is
- `log_e (9)`
- `–9`
- `(1)/(9)`
- `9`
- `–(1)/(9)`
Aussie Maths & Science Teachers: Save your time with SmarterEd
If `m = int_1^3 (2)/(x)\ dx`, then the value of `e^m` is
`D`
| `int_1^3 (2)/(x)\ dx` | `= [2 log_e x]_1^3` |
| `m` | `= 2 log_e 3 – 2 log_e 1` |
| `m` | `= 2 log_e 3` |
| `e^(2 log_e 3)` | `= e^(log_e 9)` |
| `= 9` |
`=>D`
--- 6 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
| a. | `int_2^7 1/(x + sqrt 3)\ dx` | `= [log_e (x + sqrt 3)]_2^7` |
| `= log_e(7 + sqrt 3)-log_e (2 + sqrt 3)` | ||
| `= log_e ((7 + sqrt 3)/(2 + sqrt 3))` |
| `int_2^7 1/(x-sqrt 3)\ dx` | `= [log_e (x – sqrt 3)]_2^7` |
| `= log_e (7-sqrt 3)-log_e (2-sqrt 3)` | |
| `= log_e ((7-sqrt 3)/(2-sqrt 3))` |
| b. | `1/2(1/(x-sqrt 3) + 1/(x + sqrt 3))` | `= 1/2 ((x + sqrt 3 + x-sqrt 3)/((x-sqrt 3)(x + sqrt 3)))` |
| `= 1/2 ((2x)/(x^2-3))` | ||
| `= x/(x^2-3)\ \ text(… as required)` |
| c. | `int_2^7 x/(x^2-3)` | `= 1/2 int_2^7 1/(x-sqrt 3) + 1/(x + sqrt 3)\ dx` |
| `= 1/2[log_e ((7-sqrt 3)/(2-sqrt 3)) + log_e ((7 + sqrt 3)/(2 + sqrt 3))]` | ||
| `= 1/2 log_e (((7-sqrt 3)(7 + sqrt 3))/((2-sqrt 3)(2 + sqrt 3)))` | ||
| `= 1/2 log_e ((49-3)/(4-3))` | ||
| `= 1/2 log_e 46` |