Let `y = x log_e(3x).`
- Find `(dy)/(dx)`. (2 marks)
- Hence, calculate `int_1^2 (log_e(3x) + 1) dx`. Express your answer in the form `log_e(a)`, where `a` is a positive integer. (2 marks)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `y = x log_e(3x).`
a. `text(Using Product Rule:)`
`(hg)′` | `= h′ g + h g′` |
`:. (dy)/(dx)` | `= 1 xx log_e (3x) + x (3/(3x))` |
`= log_e (3x) + 1` |
b. `text(Using Integration by Recognition:)`
`int (log_e(3x) + 1) dx = x log_e (3x)`
`:. int_1^2 (log_e (3x) + 1) dx`
`= [x log_e (3x)]_1^2`
`= (2 log_e (6)) – (log_e(3))`
`= log_e(6^2) – log_e(3)`
`= log_e (36/3)`
`= log_e(12)`
a. `y = xe^(3x)`
`text(Using product rule,)`
`(dy)/(dx)` | `= x · 3e^(3x) + 1 · e^(3x)` |
`= e^(3x) (1 + 3x)` |
b. `int_0^2 e^(3x) (3 + 9x)\ dx`
`= 3 int_0^2 e^(3x) (1 + 3x)\ dx`
`= 3 [x e^(3x)]_0^2`
`= 3 (2e^6 – 0)`
`= 6e^6`
Given that `(d(xe^(kx)))/(dx) = (kx + 1)e^(kx)`, then `int xe^(kx) dx` is equal to
`D`
`int (kx + 1)e^(kx) dx` | `= xe^(kx) + c_1` |
`k int xe^(kx) dx + int e^(kx) dx` | `= xe^(kx) + c_1` |
`k int xe^(kx) dx` | `= xe^(kx) – int e^(kx) dx + c_1` |
`:. int xe^(kx) dx` | `= 1/k (xe^(kx) – int e^(kx) dx) + c` |
`=> D`