SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, MET1 2024 VCAA 1a

Let  \(y=e^x \cos (3 x)\).

Find  \(\dfrac{d y}{d x}\)   (1 mark)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

\(e^x (\cos(3x)-3\sin(3x))\)

Show Worked Solution

  \(y\) \(=e^x \cos(3x)\)
  \(\dfrac{dy}{dx}\) \(=e^x.(-3\sin(3x))+\cos(3x).e^x\)
    \(=e^x(\cos(3x)-3\sin(3x))\)

Filed Under: L&E Differentiation Tagged With: Band 3, smc-745-10-Exponential, smc-745-30-Product Rule, smc-745-60-Trig Overlap

Calculus, MET1 2022 VCAA 1a

Let `y=3xe^{2x}`.

Find `\frac{dy}{dx}`.   (1 mark)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

`6xe^(2x) + 3e^(2x)`

Show Worked Solution

Using the product rule, given `y=3xe^{2x}`

`\frac{dy}{dx}` `=3x xx 2e^(2x)+3 xx e^(2x)`  
  `=6xe^(2x) + 3e^(2x)`  

 

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 4, smc-739-40-Product Rule, smc-745-30-Product Rule

Calculus, MET1 2023 VCAA 1b

Let  \(f(x)=\sin(x)e^{2x}\).

Find  \(f^{'}\Big(\dfrac{\pi}{4}\Big)\).   (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\dfrac{3\sqrt{2}}{2}e^{\frac{\pi}{2}}\ \text{or}\ \dfrac{3e^{\frac{\pi}{2}}}{\sqrt{2}}\)

Show Worked Solution

\(\text{Using the product rule}\)

\(f'(x)\) \(=e^{2x}\cos(x)+2e^{2x}\sin(x)\)
  \(=e^{2x}\Big(\cos(x)+2\ \sin(x)\Big)\)
\(\therefore\ f’\Big(\dfrac{\pi}{4}\Big)\) \(=e^{2(\frac{\pi}{4})}\Bigg(\cos(\dfrac{\pi}{4})+2\ \sin(\dfrac{\pi}{4})\Bigg)\)
  \(=e^{\frac{\pi}{2}}\Bigg(\dfrac{1}{\sqrt{2}}+\sqrt{2}\Bigg)\)
  \(=e^{\frac{\pi}{2}}\Bigg(\dfrac{1+\sqrt2 \times \sqrt2}{\sqrt2} \Bigg) \)
  \(=\dfrac{3\sqrt{2}}{2}e^{\frac{\pi}{2}}\ \ \text{or}\ \ \dfrac{3e^{\frac{\pi}{2}}}{\sqrt{2}}\)

Filed Under: Differentiation (L&E), Differentiation (Trig), L&E Differentiation, Trig Differentiation Tagged With: Band 3, smc-736-40-Product Rule, smc-736-70-Log/Exp overlap, smc-739-40-Product Rule, smc-739-80-Trig overlap, smc-744-40-Product Rule, smc-744-70-Log/Exp Overlap, smc-745-30-Product Rule, smc-745-60-Trig Overlap

Calculus, MET1-NHT 2018 VCAA 1b

Let  `y= (x + 5) log_e (x)`.

Find  `(dy)/(dx)`  when  `x = 5`.  (2 marks)

Show Answers Only

`log_e 5 +2`

Show Worked Solution
`(dy)/(dx)` `= 1 xx log_e x + (x + 5) * (1)/(x)`
  `= log_e x + (x + 5)/(x)`

  
`:. dy/dx|_(x=5)=log_e 5 +2`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, smc-739-30-Logs, smc-739-40-Product Rule, smc-745-20-Logs, smc-745-30-Product Rule

Calculus, MET1 2008 VCAA 1b

Let  `f(x) = xe^(3x)`.  Evaluate  `f^{prime}(0)`.   (3 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`1`

Show Worked Solution

`text(Using Product Rule:)`

`(gh)^{prime} = g^{prime}h + gh^{prime}`

`f^{prime}(x)` `= x(3e^(3x)) + 1 xx e^(3x)`
`:.f^{prime}(0)` `= 0 + e^0`
  `= 1`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 4, smc-739-10-Exponential, smc-739-40-Product Rule, smc-745-10-Exponential, smc-745-30-Product Rule, smc-745-50-Chain Rule

Calculus, MET1 2012 ADV 12ai

Differentiate with respect to `x`

`(x-1)log_e x`   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

`log_e x + 1-1/x`

Show Worked Solution
`y` `= (x-1) log_e x`
`(dy)/(dx)` `= 1(log_e x) + (x-1) 1/x`
  `= log_e x + 1-1/x`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, smc-739-30-Logs, smc-739-40-Product Rule, smc-745-20-Logs, smc-745-30-Product Rule

Calculus, MET1 2008 ADV 2aii

Differentiate with respect to `x`:

`x^2log_ex`   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

`x + 2xlog_ex`

Show Worked Solution
`y` `= x^2 log_e x`
`(dy)/(dx)` `= x^2 · 1/x + 2x · log_ex`
  `= x + 2xlog_ex`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, smc-739-30-Logs, smc-739-40-Product Rule, smc-745-20-Logs, smc-745-30-Product Rule

Calculus, MET1 2016 VCAA 1b

Let  `f(x) = x^2e^(5x)`.

Evaluate  `f^{\prime}(1)`.   (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`7e^5`

Show Worked Solution

`text(Using Product Rule:)`

`(fg)^{\prime}` `= f^{\prime}g + fg^{\prime}`
`f^{′}(x)` `= 2xe^(5x) + 5x^2 e^(5x)`
`f^{′}(1)` `= 2(1)e^(5(1)) + 5(1)^2 e^(5(1))`
  `= 7e^5`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, smc-739-10-Exponential, smc-739-40-Product Rule, smc-739-60-Chain Rule, smc-745-10-Exponential, smc-745-30-Product Rule

Calculus, MET2 2009 VCAA 7 MC

For  `y = e^(2x) cos (3x)`  the rate of change of `y` with respect to `x` when  `x = 0`  is

  1. `0`
  2. `2`
  3. `3`
  4. `– 6`
  5. `– 1`
Show Answers Only

`B`

Show Worked Solution
`y` `= e^(2x) cos (3x)`
`dy/dx` `=e^(2x) xx -3sin(3x) + 2e^(2x) xx cos (3x)`
  `=e^(2x)(-3sin(3x) + 2cos(3x))`

 
`text(When)\ \ x = 0,`

`dy/dx= 2`

`=>   B`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, smc-739-10-Exponential, smc-739-40-Product Rule, smc-739-60-Chain Rule, smc-739-80-Trig overlap, smc-745-10-Exponential, smc-745-30-Product Rule, smc-745-60-Trig Overlap

Calculus, MET1 2009 VCAA 1a

Differentiate  `x log_e (x)`  with respect to `x`.   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

`log_e (x) + 1`

Show Worked Solution

`text(Using Product rule:)`

`(fg)^{\prime}` `= f^{\prime}g + fg^{\prime}`
`d/(dx) (x log_e (x))` `= 1 xx log_e (x) + x (1/x)`
  `= log_e (x) + 1`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, smc-739-30-Logs, smc-739-40-Product Rule, smc-745-20-Logs, smc-745-30-Product Rule

Calculus, MET1 2010 VCAA 1a

Differentiate  `x^3 e^(2x)`  with respect to `x`.   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

`3x^2 e^(2x) + 2x^3 e^(2x)`

Show Worked Solution

    `text(Using Product rule:)`

`(fg)^{prime}` `= f^{prime}g + fg^{prime}`
`d/(dx) (x^3 e^(2x))` `= 3x^2 e^(2x) + 2x^3 e^(2x)`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, Band 4, smc-739-10-Exponential, smc-739-40-Product Rule, smc-745-10-Exponential, smc-745-30-Product Rule

Calculus, MET1 2013 VCAA 1a

If  `y = x^2 log_e (x)`, find  `(dy)/(dx)`.   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

`2x log_e (x) + x`

Show Worked Solution

`text(Using Product Rule:)`

`(fg)^{\prime}` `= f^{prime} g + f g^{prime}`
`(dy)/(dx)` `= 2x log_e (x) + x^2 (1/x)`
  `= 2x log_e (x) + x`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, smc-739-30-Logs, smc-739-40-Product Rule, smc-745-20-Logs, smc-745-30-Product Rule

Copyright © 2014–2025 SmarterEd.com.au · Log in