Find and simplify the rule of `f^{\prime}(x)`, where `f:R \rightarrow R, f(x)=\frac{\cos (x)}{e^x}`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find and simplify the rule of `f^{\prime}(x)`, where `f:R \rightarrow R, f(x)=\frac{\cos (x)}{e^x}`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`\frac{-(\sin x+\cos x)}{e^x}`
Using the quotient rule
| `f(x)` | `=\frac{\cos (x)}{e^x}` | |
| `f^{\prime}(x)` | `=\frac{-e^x \sin x-e^x \cos x}{e^{2 x}}` | |
| `= \frac{-e^x(\sin x+\cos x)}{e^{2 x}}` | ||
| `=\frac{-(\sin x+\cos x)}{e^x}` |
Let \(y=\dfrac{x^2-x}{e^x}\).
Find and simplify \(\dfrac{dy}{dx}\). (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
\(-\Bigg(\dfrac{x^2-3x+1}{e^x}\Bigg) \)
\(\text{Using the quotient rule:}\)
| \(\dfrac{dy}{dx}\) | \(=\dfrac{e^x(2x-1)-(x^2-x)e^x}{(e^x)^2}\) |
| \(=\dfrac{e^x(-x^2+3x-1)}{e^{2x}}\) | |
| \(=\dfrac{-x^2+3x-1}{e^x}\) |
Let `f(x) = (e^x)/((x^2-3))`.
Find `f^{prime}(x)`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`{e^x(x^2-2x-3)}/{(x^2-3)^2}`
`text(Let) \ \ u = e^x \ \ => \ \ u^{prime} = e^x`
`v = (x^2-3) \ \ => \ \ v^{prime} = 2x`
| `f^{prime}(x)` | `= {e^x(x^2-3)-2x e^x}/{(x^2-3)^2}` |
| `= {e^x(x^2-2x-3)}/{(x^2-3)^2}` |
Let `y = (2e^(2x)-1)/e^x`.
Find `(dy)/(dx)`. (2 marks)
--- 3 WORK AREA LINES (style=lined) ---
`(dy)/(dx) = 2e^x + e^(-x)`
`text(Method 1)`
| `y` | `= 2e^x-e^(-x)` |
| `(dy)/(dx)` | `= 2e^x + e^(-x)` |
`text(Method 2)`
| `(dy)/(dx)` | `= (4e^(2x) ⋅ e^x-(2e^(2x)-1) e^x)/(e^x)^2` |
| `= (4e^(3x)-2e^(3x) + e^x)/e^(2x) ` | |
| `= (2e^(2x) + 1)/e^x` |
Let `f(x) = (e^x)/(cos(x))`.
Evaluate `f^{prime}(pi)`. (2 marks)
--- 7 WORK AREA LINES (style=lined) ---
`text(See Worked Solutions)`
`f^{prime}(x) = (e^x)/(cos(x))`
| `u` | `= e^x` | `v` | `= cos(x)` |
| `u^{prime}` | `= e^x` | `v^{prime}` | `=-sin(x)` |
| `f^{prime}(x)` | `= (u^{prime}v-uv^{prime})/(v^2)` |
| `= (e^x · cos(x) + e^x sin(x))/(cos^2(x))` |
| `f^{prime}(pi)` | `= (e^pi · cospi + e^pi sinpi)/(cos^2 pi)` |
| `= (e^pi(-1) + e^pi · 0)/((-1)^2)` | |
| `= -e^pi` |
Let `f(x) = (log_e(x))/(x^2)`.
--- 3 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `text(Using Quotient Rule:)`
| `(h/g)^{prime}` | `= (h^{prime}g-hg^{prime})/(g^2)` |
| `f^{prime}(x)` | `= ((1/x)x^2-log_e(x)*2x)/(x^4)` |
| `= (1-2log_e(x))/(x^3)` |
| ii. | `f^{prime}(1)` | `= (1-2log_e(1))/(1^3)` |
| `= 1` |
Differentiate with respect to `x`:
`(2x)/(e^x + 1).` (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`(2(e^x + 1-xe^x))/((e^x + 1)^2)`
`y = (2x)/(e^x + 1)`
| `u` | `= 2x` | `v` | `= e^x + 1` |
| `u^{\prime}` | `= 2` | `v^{\prime}` | `= e^x` |
| `(dy)/(dx)` | `= (u^{\prime}v – uv^{\prime})/(v^2)` |
| `= (2(e^x + 1)-2x(e^x))/((e^x + 1)^2)` | |
| `= (2e^x + 2-2x · e^x)/((e^x + 1)^2)` | |
| `= (2(e^x + 1-xe^x))/((e^x + 1)^2)` |