If `\frac{d}{d x}(x \cdot \sin(x))=\sin (x)+x \cdot \cos(x)`, then `\frac{1}{k} \int x \ cos(x)dx` is equal to
- `k\left(x \cdot \sin (x)-\int \sin (x) d x\right)+c`
- `\frac{1}{k} x \cdot \sin (x)-\int \sin (x) d x+c`
- `\frac{1}{k}\left(x \cdot \sin (x)-\int \sin (x) d x\right)+c`
- `\frac{1}{k}(x \cdot \sin (x)-\sin (x))+c`
- `\frac{1}{k}\left(\int x \cdot \sin (x) d x-\int \sin (x) d x\right)+c`