If `m = int_1^3 (2)/(x)\ dx`, then the value of `e^m` is
- `log_e (9)`
- `–9`
- `(1)/(9)`
- `9`
- `–(1)/(9)`
Aussie Maths & Science Teachers: Save your time with SmarterEd
If `m = int_1^3 (2)/(x)\ dx`, then the value of `e^m` is
`D`
`int_1^3 (2)/(x)\ dx` | `= [2 log_e x]_1^3` |
`m` | `= 2 log_e 3 – 2 log_e 1` |
`m` | `= 2 log_e 3` |
`e^(2 log_e 3)` | `= e^(log_e 9)` |
`= 9` |
`=>D`
a. | `int_2^7 1/(x + sqrt 3)\ dx` | `= [log_e (x + sqrt 3)]_2^7` |
`= log_e(7 + sqrt 3) – log_e (2 + sqrt 3)` | ||
`= log_e ((7 + sqrt 3)/(2 + sqrt 3))` |
`int_2^7 1/(x – sqrt 3)\ dx` | `= [log_e (x – sqrt 3)]_2^7` |
`= log_e (7 – sqrt 3) – log_e (2 – sqrt 3)` | |
`= log_e ((7 – sqrt 3)/(2 – sqrt 3))` |
b. | `1/2(1/(x – sqrt 3) + 1/(x + sqrt 3))` | `= 1/2 ((x + sqrt 3 + x – sqrt 3)/((x – sqrt 3)(x + sqrt 3)))` |
`= 1/2 ((2x)/(x^2 – 3))` | ||
`= x/(x^2 – 3)\ \ text(… as required)` |
c. | `int_2^7 x/(x^2 – 3)` | `= 1/2 int_2^7 1/(x – sqrt 3) + 1/(x + sqrt 3)\ dx` |
`= 1/2[log_e ((7 – sqrt 3)/(2 – sqrt 3)) + log_e ((7 + sqrt 3)/(2 + sqrt 3))]` | ||
`= 1/2 log_e (((7 – sqrt 3)(7 + sqrt 3))/((2 – sqrt 3)(2 + sqrt 3)))` | ||
`= 1/2 log_e ((49 – 3)/(4 – 3))` | ||
`= 1/2 log_e 46` |