Let `f^(′)(x)=(2)/(sqrt(2x-3))`.
If `f(6)=4`, then
- `f(x)=2sqrt(2x-3)`
- `f(x)=sqrt(2x-3)-2`
- `f(x)=2sqrt(2x-3)-2`
- `f(x)=sqrt(2x-3)+2`
- `f(x)=sqrt(2x-3)`
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `f^(′)(x)=(2)/(sqrt(2x-3))`.
If `f(6)=4`, then
`=>C`
`f^(′)(x)` | `=2/(sqrt(2x-3))` | |
`f(x)` | `=2 int(2x-3)^{- 1/2}` | |
`=2*1/2*2(2x-3)^{1/2}+c` | ||
`=2sqrt(2x-3)+c` |
`text(When)\ \ x=6, \ f(x)=4:`
`4=2sqrt(12-3) + c \ => \ c=-2`
`:. f(x) = 2sqrt(2x-3) – 2`
`=>C`
Find `int sqrt(5x +1) \ dx .` (2 marks)
`2/15(5x + 1)^(3/2) + c`
` int sqrt( 5x + 1 ) \ dx` | `= 1/(3/2) xx 1/5 xx (5x+1)^(3/2) + c` |
`= 2/15(5x + 1)^(3/2) + c` |
Find `int (2x + 1)^4\ dx`. (1 mark)
`(2x + 1)^5/10 + c`
`int (2x + 1)^4\ dx` | `= 1/5 xx 1/2 xx (2x + 1)^5 + c` |
`= (2x + 1)^5/10 + c` |
Find an antiderivative of `1/(3x - 4)` with respect to `x.` (1 mark)
`1/3 log_e | 3x – 4 |`
`int (3x – 4)^-1\ dx`
`= 1/3 log_e (| 3x – 4 |)+c`
Find an anti-derivative of `1/(2x - 1)^3` with respect to `x.` (2 marks)
`(-1)/(4(2x – 1)^2) + c`
`int (2x – 1)^-3 dx` | `= -1/(2 xx 2) (2x – 1)^-2 +c` |
`= (-1)/(4(2x – 1)^2) + c` |
Find an anti-derivative of `(4 - 2x)^-5` with respect to `x.` (2 marks)
`1/(8(4 – 2x)^4)`
`int(4 – 2x)^-5 dx` | `= – 1/4 xx – 1/2 (4 – 2x)^-4` |
`= 1/(8(4 – 2x)^4)` |