Let `f^(′)(x)=(2)/(sqrt(2x-3))`.
If `f(6)=4`, then
- `f(x)=2sqrt(2x-3)`
- `f(x)=sqrt(2x-3)-2`
- `f(x)=2sqrt(2x-3)-2`
- `f(x)=sqrt(2x-3)+2`
- `f(x)=sqrt(2x-3)`
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `f^(′)(x)=(2)/(sqrt(2x-3))`.
If `f(6)=4`, then
`=>C`
`f^(′)(x)` | `=2/(sqrt(2x-3))` | |
`f(x)` | `=2 int(2x-3)^{- 1/2}` | |
`=2*1/2*2(2x-3)^{1/2}+c` | ||
`=2sqrt(2x-3)+c` |
`text(When)\ \ x=6, \ f(x)=4:`
`4=2sqrt(12-3) + c \ => \ c=-2`
`:. f(x) = 2sqrt(2x-3) – 2`
`=>C`
Let `f′(x) = x^3 + x`.
Find `f(x)` given that `f(1) = 2`. (2 marks)
`f(x) =1/4 x^4 + 1/2 x^2 +5/4`
`f′(x)` | `= x^3 + x` | |
`f(x)` | `=int x^3 + x\ dx` | |
`=1/4 x^4 + 1/2 x^2 +c` |
`text(Given)\ f(1) = 2:`
`2` | `= 1/4 + 1/2 + c` | |
`c` | `= 5/4` |
`:. f(x) =1/4 x^4 + 1/2 x^2 +5/4`
Find `f(x)` given that `f(1) = -7/4` and `f ^{\prime}(x) = 2x^2 - 1/4x^(-2/3)`. (2 marks)
`f(x) = 2/3x^3 – 3/4x^(1/3) – 5/3`
`f(x)` | `= int 2x^2 – 1/4x^(-2/3) dx` |
`= 2/3x^3 – 1/4 ⋅ 1/(1/3) x^(1/3) + c` | |
`= 2/3x^3 – 3/4x^(1/3) + c` |
`text(Given)\ \ f(1) = -7/4:`
`-7/4` | `= 2/3 – 3/4 + c` |
`c` | `= -5/3` |
`:. f(x)` | `= 2/3x^3 – 3/4x^(1/3) – 5/3` |
Let `f prime(x) = 3x^2 - 2x` such that `f(4) = 0`.
The rule of `f` is
A. `f(x) = x^3 - x^2`
B. `f(x) = x^3 - x^2 + 48`
C. `f(x) = x^3 - x^2 - 48`
D. `f(x) = 6x - 2`
E. `f(x) = 6x - 24`
`C`
`f(x)` | `= int 3x^2 – 2x\ dx` |
`= x^3 – x^2 + c` |
`text(When)\ \ x = 4, \ f(x) = 0`
`0 = 4^3 – 4^2 + c`
`c = -48`
`:. f(x) = x^3 – x^2 – 48`
`=> C`
A function `g` with domain `R` has the following properties.
● `g prime (x) = x^2 - 2x`
● the graph of `g(x)` passes through the point `(1, 0)`
`g (x)` is equal to
A. `2x - 2`
B. `x^3/3 - x^2`
C. `x^3/3 - x^2 + 2/3`
D. `x^2 - 2x + 2`
E. `3x^3 - x^2 - 1`
`C`
`g(x)` | `= int (x^2 – 2x)\ dx` |
`= 1/3 x^3 – x^2 + c` |
`text(Graph passes through)\ \ (1, 0),`
`0` | `= 1/3 (1)^3 – (1)^2 + c` |
`c` | `= 2/3` |
`:. g(x)` | `= 1/3 x^3 – x^2 + 2/3` |
`=> C`
Let `f(x) = ax^m` and `g(x) = bx^n`, where `a, b, m` and `n` are positive integers. The domain of `f = text(domain of)\ g = R.`
If `f prime (x)` is an antiderivative of `g(x)`, then which one of the following must be true?
A. `m/n` is an integer
B. `n/m` is an integer
C. `a/b` is an integer
D. `b/a` is an integer
E. `n - m = 2`
`D`
`text(Given)\ \ f prime(x)` | `=int g(x)\ dx,` |
`amx^(m – 1)` | `= b/(n + 1) x^(n + 1)` |
`m – 1 = n + 1\ …\ (1)\ \ \ text{(equate powers)}`
`am = b/(n + 1)\ …\ (2)\ \ \ text{(equate coefficients)}`
`text(Solving simultaneous equations:)`
`m(n + 1) = b/a`
`text(S)text(ince)\ \ m, n + 1\ text(are both integers)\ \ text{(i.e. ∈}\ Z^+text{)},`
`=> m(n + 1) ∈ Z^+`
`:. b/a = m(n + 1) ∈ Z^+`
`=> D`