SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, MET1 2024 VCAA 6

Solve  \(2 \log _3(x-4)+\log _3(x)=2\)  for \(x\).   (4 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\dfrac{7 + \sqrt{13}}{2}\)

Show Worked Solution

\(2\log_3(x-4)+\log_3(x)\) \(=2\)
\(\log_3x(x-4)^2\) \(=2\)
\(x(x-4)^2\) \(=3^2\)
\(x(x^2-8x+16)-9\) \(=0\)
\(x^3-8x^2+16x-9\) \(=0\)

 
\(\text{Find a factor}\ \ \Rightarrow\ \ \text{Test}\ \ x=1:\)

\(1^3-8(1)^2+16(1)-9=0\)

\(\therefore\ x-1\ \text{is a factor} \)

♦♦ Mean mark 36%.

\((x-1)(x^2-7x+9)=0\)
  

\(\text{Using quadratic formula to solve}\ \ x^2-7x+9=0:\)

\(x\) \(=\dfrac{-(-7)\pm\sqrt{(-7)^2-4(1)(9)}}{2(1)}\)
  \(=\dfrac{7\pm \sqrt{49-36}}{2}\)
  \(=\dfrac{7\pm \sqrt{13}}{2}\)

\( x=1, \dfrac{7- \sqrt{13}}{2}, \dfrac{7 + \sqrt{13}}{2}\)

  
\(\text{For }\log_3(x-4)\ \text{to exist}\ x>4\)

\(\therefore\ \dfrac{7 + \sqrt{13}}{2}\ \text{ is the only possible solution.}\)

Filed Under: Log/Index Laws and Equations, Polynomials Tagged With: Band 5, smc-726-10-Log - Product/Quotient Rule, smc-726-20-Log - Power Rule, smc-750-10-Factor Theorem, smc-750-50-Cubics

Functions, MET2 2024 VCAA 1

Consider the function  \( f: R \rightarrow R, f(x)=(x+1)(x+a)(x-2)(x-2 a) \text { where } a \in R \text {. } \)

  1. State, in terms of \(a\) where required, the values of \(x\) for which \(f(x)=0\).  (1 mark

    --- 2 WORK AREA LINES (style=lined) ---

  1. Find the values of \(a\) for which the graph of \(y=f(x)\) has
      
     i. exactly three \(x\)-intercepts.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

    ii. exactly four \(x\)-intercepts.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  1. Let \(g\) be the function \(g: R \rightarrow R, g(x)=(x+1)^2(x-2)^2\), which is the function \(f\) where \(a=1\).
      
      i. Find \(g^{\prime}(x)\)   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

     ii. Find the coordinates of the local maximum of \(g\).   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

    iii. Find the values of \(x\) for which \(g^{\prime}(x)>0\).   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

     iv. Consider the two tangent lines to the graph of \(y=g(x)\) at the points where
    \(x=\dfrac{-\sqrt{3}+1}{2}\) and \(x=\dfrac{\sqrt{3}+1}{2}\). Determine the coordinates of the point of intersection of these two tangent lines.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  1. Let \(g\) remain as the function \(g: R \rightarrow R, g(x)=(x+1)^2(x-2)^2\), which is the function \(f\) where \(a=1\).

    Let \(h\) be the function \(h: R \rightarrow R, h(x)=(x+1)(x-1)(x+2)(x-2)\), which is the function \(f\) where \(a=-1\).
      
     i. Using translations only, describe a sequence of transformations of \(h\), for which its image would have a local maximum at the same coordinates as that of \(g\).   (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

    ii. Using a dilation and translations, describe a different sequence of transformations of \(h\), for which its image would have both local minimums at the same coordinates as that of \(g\).   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(x=-1, x=a, x=2, x=2a\)

bi.  \(a=0, -2, -\dfrac{1}{2}\)

bii. \(R\ \backslash\left\{ -2, -\dfrac{1}{2}, 0, 1\right\}\)

ci.  \(g^{\prime}(x)=2(x-2)(x+1)(2x-1)\)

cii. \(\left(\dfrac{1}{2} , \dfrac{81}{16}\right)\)

ciii. \(x\in\left(-1, \dfrac{1}{2}\right)\cup (2, \infty)\)

civ. \(\left(\dfrac{1}{2}, \dfrac{27}{4}\right)\)

di.   \(\text{Translate }\dfrac{1}{2}\ \text{unit to the right and }\dfrac{81}{16}-4=\dfrac{17}{16}\ \text{units upwards.}\)

dii.  \(\text{Combination is a dilation of }h(x)\ \text{by a factor of}\ \dfrac{3}{\sqrt{10}}\ \text{followed by a }\)

\(\text{translation of }\dfrac{1}{2} \ \text{a unit to the right and an upwards translation of}\ \dfrac{9}{4} \ \text{units}\)

Show Worked Solution

a.    \(x=-1, x=a, x=2, x=2a\)

bi.  \(a=0, -2, -\dfrac{1}{2}\)

bii. \(\text{The solution must be all }R\ \text{except those that give 3 or less solutions.}\)

\(\therefore\ R\ \backslash\left\{ -2, -\dfrac{1}{2}, 0, 1\right\}\)

ci.    \(g^{\prime}(x)\) \(=2(2-x)(x+1)^2+(x-2)^22(x+1)\)
    \(=2(x-2)(x+1)(x+1+x+2)\)
    \(=2(x-2)(x+1)(2x-1)\)

  
cii.  \(\text{When  }g^{\prime}(x)=0, x=2, -1, \dfrac{1}{2}\)

\(\text{From graph local maximum occurs when }x=\dfrac{1}{2}\)

\(g\left(\dfrac{1}{2}\right)\) \(=\left(\dfrac{1}{2}+1\right)^2\left(\dfrac{1}{2}-2\right)^2\)
  \(=\dfrac{9}{4}\times \dfrac{9}{4}=\dfrac{81}{16}\)

  
\(\therefore\ \text{Local maximum at}\ \left(\dfrac{1}{2} , \dfrac{81}{16}\right)\)

ciii. \(\text{From graph}\ g^{\prime}(x)>0\ \text{when }x\in\left(-1, \dfrac{1}{2}\right)\cup (2, \infty)\)

civ.  \(\text{Use CAS to find tangent lines and solve to find intersection.}\)

\(\text{Point of intersection of tangent lines}\ \left(\dfrac{1}{2}, \dfrac{27}{4}\right)\)

di.  \(\text{Local maximum of }g(x)\ \rightarrow\left(\dfrac{1}{2}, \dfrac{81}{16}\right)\)

\(\text{From CAS local maximum of }h(x)\ \rightarrow \left(0, 4\right)\)

\(\therefore\ \text{Translate }\dfrac{1}{2}\ \text{unit to the right and }\dfrac{81}{16}-4=\dfrac{17}{16}\ \text{units upwards.}\)

dii. \(\text{Using CAS to solve }g^{\prime}(x)=0\ \text{and }h^{\prime}(x)=0\)

\(\text{Local Minimums for }g(x)\ \text{at }(-1, 0)\ \text{and }(2, 0)\ \text{which are 3 apart.}\)

\(\text{Local minimums for at }h(x)\ \text{at }\left(-\sqrt{\dfrac{5}{2}}, -\dfrac{9}{4}\right)\ \text{and }\left(\sqrt{\dfrac{5}{2}}, -\dfrac{9}{4}\right)\)

\(\therefore\ \text{Combination is a dilation of }h(x)\ \text{by a factor of}\ \dfrac{3}{\sqrt{10}}\ \text{followed by a }\)

\(\text{translation of }\dfrac{1}{2} \ \text{a unit to the right and an upwards translation of}\ \dfrac{9}{4} \ \text{units.}\)

 

Filed Under: Polynomials, Tangents and Normals, Transformations Tagged With: Band 3, Band 4, Band 5, smc-634-10-Polynomial, smc-750-10-Factor Theorem, smc-750-60-Other, smc-753-40-Combinations

Algebra, MET2-NHT 2019 VCAA 3 MC

If  `x + a`  is a factor of  `8x^3 - 14x^2 - a^2 x`, where  `a ∈ R text(\{0})`, then the value of  `a`  is

  1.  7
  2.  4
  3.  1
  4. –2
  5. –1
Show Answers Only

`D`

Show Worked Solution
`f(–a)` `= 8(–a)^3 – 14(–a)^2 – a^2(–a)`
`0` `= -8a^3 – 14a^2 + a^3`
`0` `= -7a^3 – 14a^2`
`0` `= -7a^2 (a + 2)`
`a` `= -2`

Filed Under: Polynomials Tagged With: Band 3, smc-750-10-Factor Theorem

Algebra, MET1 SM-Bank 24

The polynomial  `p(x) = x^3-ax + b`  has a remainder of 2 when divided by  `(x-1)`  and a remainder of 5 when divided by  `(x + 2)`.  

Find the values of  `a`  and  `b`.   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
`a` `= 4`
`b` `= 5`
Show Worked Solution
`p(x)` `= x^3-ax + b`
`P(1)` `= 2`
`1-a + b` `= 2`
`b` `= a+1\ \ \ …\ text{(1)}`
`P (-2)` `= 5`
`-8 + 2a + b` `= 5`
`2a + b` `= 13\ \ \ …\ text{(2)}`

 

`text(Substitute)\ \ b = a+1\ \ text(into)\ \ text{(2)}`

`2a + a+1` `= 13`
`3a` `= 12`
`:. a` `= 4`
`:. b` `= 5`

Filed Under: Polynomials Tagged With: Band 4, smc-750-10-Factor Theorem, smc-750-20-Remainder Theorem

Algebra, MET1 SM-Bank 23

The graph of  `P(x) = x^2 + ax + b`  cuts the `x`-axis when  `x=2.`  When  `P(x)`  is divided by  `x + 1`, the remainder is 18.

Find the values of  `a`  and  `b`.   (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`a = -7\ \ text(and)\ \ b = 10`

Show Worked Solution

`P(x) = x^2 + ax + b`

`text(S)text(ince the graph cuts the)\ xtext(-axis at)\ \ x = 2,`

`P(2)` `=0`  
`2^2 + 2a + b` `= 0`  
`2a + b` `= -4`       `…\ (1)`

 
`P(-1) = 18,`

`(-1)^2-a + b` `= 18`  
`-a + b` `= 17`    `…\ (2)`

 
`text(Subtract)\ \ (1) − (2),`

`3a` `= -21`
`a` `= -7`

 
`text(Substitute)\ \ a = -7\ \ text{into (1),}`

`2(-7) + b` `= -4`
`b` `= 10`

 

`:.a = -7\ \ text(and)\ \ b = 10`

Filed Under: Polynomials Tagged With: Band 4, smc-750-10-Factor Theorem, smc-750-20-Remainder Theorem

Algebra, MET2 SM-Bank 7 MC

If  `x-2`  is a factor of  `2x^3 - 10x^2 + 6x + a`  where  `a in R text{\}{0},`  then the value of `a` is

A.   `-68`

B.   `-20`

C.     `-2`

D.        `2`

E.      `12`

Show Answers Only

`E`

Show Worked Solution

`text(S)text(ince)\ \ x-2\ \ text(is a factor,)`

`=> P(2)=0`

`P(2)` `= 2 · 2^3 – 10 · 2^2 + 6 · 2 + a`
`0`  `= 16-40+12+a`
`a` `=12`

 

`=>  E`

Filed Under: Polynomials Tagged With: Band 3, smc-750-10-Factor Theorem

Algebra, MET2 2011 VCAA 3 MC

If  `x + a`  is a factor of  `4x^3 - 13x^2 - ax`  where  `a ∈ R text(\{0})`, then the value of `a` is

A.   `−4`

B.   `−3`

C.   `−1`

D.      `1`

E.      `2`

Show Answers Only

`=> B`

Show Worked Solution

`text(Let)\ \ p(x) = 4x^3 – 13x^2 – ax`

`text(If)\ \ (x + a)\ \ text(is a factor,)`

`p(−a)` `= 0`
`0` `=4(-a)^3-13(-a)^2-a(-a)`
  `=-4a^3-13a^2+a^2`
  `=-4a^2(a+3)`

 

`:. a = −3,\ \ \ (a != 0)`

`=> B`

Filed Under: Polynomials Tagged With: Band 4, smc-750-10-Factor Theorem

Algebra, MET2 2013 VCAA 3 MC

If   `x + a`   is a factor of   `7x^3 + 9x^2 - 5ax`, where  `a in R text(\){0}`, then the value of  `a`  is

A.   `-4`

B.   `-2`

C.   `-1`

D.   `1`

E.   `2`

Show Answers Only

`E`

Show Worked Solution

`text(S)text(ince)\ \ x+a\ \ text(is a factor),\ \ f(-a)=0`

`7(-a)^3 + 9(-a)^2 – 5a(-a) = 0,`

`-7a^3 + 14a^2` `=0`
`-7a^2 (a – 2)` `=0`
`:. a = 2,` `\ \ \ a!=0`

 
`=>   E`

Filed Under: Polynomials Tagged With: Band 4, smc-750-10-Factor Theorem

Copyright © 2014–2025 SmarterEd.com.au · Log in