If `x + a` is a factor of `8x^3 - 14x^2 - a^2 x`, where `a ∈ R text(\{0})`, then the value of `a` is
- 7
- 4
- 1
- –2
- –1
Aussie Maths & Science Teachers: Save your time with SmarterEd
If `x + a` is a factor of `8x^3 - 14x^2 - a^2 x`, where `a ∈ R text(\{0})`, then the value of `a` is
`D`
`f(–a)` | `= 8(–a)^3 – 14(–a)^2 – a^2(–a)` |
`0` | `= -8a^3 – 14a^2 + a^3` |
`0` | `= -7a^3 – 14a^2` |
`0` | `= -7a^2 (a + 2)` |
`a` | `= -2` |
The polynomial `p(x) = x^3-ax + b` has a remainder of 2 when divided by `(x-1)` and a remainder of 5 when divided by `(x + 2)`.
Find the values of `a` and `b`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`a` | `= 4` |
`b` | `= 5` |
`p(x)` | `= x^3-ax + b` |
`P(1)` | `= 2` |
`1-a + b` | `= 2` |
`b` | `= a+1\ \ \ …\ text{(1)}` |
`P (-2)` | `= 5` |
`-8 + 2a + b` | `= 5` |
`2a + b` | `= 13\ \ \ …\ text{(2)}` |
`text(Substitute)\ \ b = a+1\ \ text(into)\ \ text{(2)}`
`2a + a+1` | `= 13` |
`3a` | `= 12` |
`:. a` | `= 4` |
`:. b` | `= 5` |
The graph of `P(x) = x^2 + ax + b` cuts the `x`-axis when `x=2.` When `P(x)` is divided by `x + 1`, the remainder is 18.
Find the values of `a` and `b`. (3 marks)
`a = -7\ \ text(and)\ \ b = 10`
`P(x) = x^2 + ax + b`
`text(S)text(ince the graph cuts the)\ xtext(-axis at)\ \ x = 2,`
`P(2)` | `=0` | |
`2^2 + 2a + b` | `= 0` | |
`2a + b` | `= −4` | `…\ (1)` |
`P(−1) = 18,`
`(−1)^2 − a + b` | `= 18` | |
`−a + b` | `= 17` | `…\ (2)` |
`text(Subtract)\ \ (1) − (2),`
`3a` | `= −21` |
`a` | `= −7` |
`text(Substitute)\ \ a = −7\ \ text{into (1),}`
`2(−7) + b` | `= −4` |
`b` | `= 10` |
`:.a = −7\ \ text(and)\ \ b = 10`
If `x-2` is a factor of `2x^3 - 10x^2 + 6x + a` where `a in R text{\}{0},` then the value of `a` is
A. `-68`
B. `-20`
C. `-2`
D. `2`
E. `12`
`E`
`text(S)text(ince)\ \ x-2\ \ text(is a factor,)`
`=> P(2)=0`
`P(2)` | `= 2 · 2^3 – 10 · 2^2 + 6 · 2 + a` |
`0` | `= 16-40+12+a` |
`a` | `=12` |
`=> E`
If `x + a` is a factor of `4x^3 - 13x^2 - ax` where `a ∈ R text(\{0})`, then the value of `a` is
A. `−4`
B. `−3`
C. `−1`
D. `1`
E. `2`
`=> B`
`text(Let)\ \ p(x) = 4x^3 – 13x^2 – ax`
`text(If)\ \ (x + a)\ \ text(is a factor,)`
`p(−a)` | `= 0` |
`0` | `=4(-a)^3-13(-a)^2-a(-a)` |
`=-4a^3-13a^2+a^2` | |
`=-4a^2(a+3)` |
`:. a = −3,\ \ \ (a != 0)`
`=> B`
If `x + a` is a factor of `7x^3 + 9x^2 - 5ax`, where `a in R text(\){0}`, then the value of `a` is
A. `-4`
B. `-2`
C. `-1`
D. `1`
E. `2`
`E`
`text(S)text(ince)\ \ x+a\ \ text(is a factor),\ \ f(-a)=0`
`7(-a)^3 + 9(-a)^2 – 5a(-a) = 0,`
`-7a^3 + 14a^2` | `=0` |
`-7a^2 (a – 2)` | `=0` |
`:. a = 2,` | `\ \ \ a!=0` |
`=> E`