Find all the values of \(k\), such that the equation \(x^2+(4k+3)x+4k^2-\dfrac{9}{4}=0\) has two real solutions for \(x\), one positive and one negative.
- \(k>-\dfrac{3}{4}\)
- \(k\geq-\dfrac{3}{4}\)
- \(k>\dfrac{3}{4}\)
- \(-\dfrac{3}{4}<k<\dfrac{3}{4}\)
- \(k<-\dfrac{3}{4}\ \text{or}\ k>\dfrac{3}{4}\)