SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, MET1 2024 VCAA 6

Solve  \(2 \log _3(x-4)+\log _3(x)=2\)  for \(x\).   (4 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\dfrac{7 + \sqrt{13}}{2}\)

Show Worked Solution

\(2\log_3(x-4)+\log_3(x)\) \(=2\)
\(\log_3x(x-4)^2\) \(=2\)
\(x(x-4)^2\) \(=3^2\)
\(x(x^2-8x+16)-9\) \(=0\)
\(x^3-8x^2+16x-9\) \(=0\)

 
\(\text{Find a factor}\ \ \Rightarrow\ \ \text{Test}\ \ x=1:\)

\(1^3-8(1)^2+16(1)-9=0\)

\(\therefore\ x-1\ \text{is a factor} \)

♦♦ Mean mark 36%.

\((x-1)(x^2-7x+9)=0\)
  

\(\text{Using quadratic formula to solve}\ \ x^2-7x+9=0:\)

\(x\) \(=\dfrac{-(-7)\pm\sqrt{(-7)^2-4(1)(9)}}{2(1)}\)
  \(=\dfrac{7\pm \sqrt{49-36}}{2}\)
  \(=\dfrac{7\pm \sqrt{13}}{2}\)

\( x=1, \dfrac{7- \sqrt{13}}{2}, \dfrac{7 + \sqrt{13}}{2}\)

  
\(\text{For }\log_3(x-4)\ \text{to exist}\ x>4\)

\(\therefore\ \dfrac{7 + \sqrt{13}}{2}\ \text{ is the only possible solution.}\)

Filed Under: Log/Index Laws and Equations, Polynomials Tagged With: Band 5, smc-726-10-Log - Product/Quotient Rule, smc-726-20-Log - Power Rule, smc-750-10-Factor Theorem, smc-750-50-Cubics

Algebra, MET2 2011 VCAA 18 MC

The equation  `x^3 - 9x^2 + 15x + w = 0`  has only one solution for `x` when

A.   `−7 < w < 25`

B.   `w <= −7`

C.   `w >=25`

D.   `w < −7` or `w > 25`

E.   `w > 1`

Show Answers Only

`=> D`

Show Worked Solution
`y` `=x^3 – 9x^2 + 15x + w`
`y′` `=3x^2 – 18x + 15`
  `=3(x-5)(x-1)`

 

`text(Stationary points at)\ \ x=5 and 1.`

`text{Sketch the graph}\ \ (w=0),`

met2-2011-vcaa-18-mc-answer
 

`text(By inspection, one solution occurs when)`

`w > 25\ \ text{(shift curve up > 25), or}`

`w < −7\ \ text{(shift curve down > 7)`

`=> D`

Filed Under: Polynomials Tagged With: Band 4, smc-750-50-Cubics

Graphs, MET2 2015 VCAA 17 MC

A graph with rule  `f(x) = x^3 - 3x^2 + c`, where `c` is a real number, has three distinct `x`-intercepts

The set of all possible values of `c` is

A.   `R`

B.   `R^+`

C.   `{0, 4}`

D.   `(0, 4)`

E.   `text{(−∞, 4)}`

Show Answers Only

`D`

Show Worked Solution

met2-2015-vcaa-17-mc-answer

`text(Consider the graph of)\ \ f(x) = x^3 – 3x^2`

`text(For three)\ xtext(-intercepts, translate up)`

`text{between (0, 4) units}`

`c ∈ (0,4)`

`=>   D`

Filed Under: Polynomials Tagged With: Band 4, smc-750-50-Cubics

Algebra, MET2 2015 VCAA 6 MC

For the polynomial  `P(x) = x^3 - ax^2 - 4x + 4,\ \ P(3) = 10,`  the value of `a` is

A.   `− 3`

B.   `− 1`

C.       `1`

D.       `3`

E.     `10`

Show Answers Only

`C`

Show Worked Solution
`P(3)` `= 3^3 – 3^2*a -4(3)+4`
`10` `=27-9a-12+4`
`9a` `=9`
`:. a` `= 1`

 
`=>   C`

Filed Under: Polynomials Tagged With: Band 2, smc-750-50-Cubics

Calculus, MET2 2013 VCAA 21 MC

The cubic function  `f: R -> R, f(x) = ax^3-bx^2 + cx`, where `a, b` and `c` are positive constants, has no stationary points when

  1. `c > b^2/(4a)`
  2. `c < b^2/(4a)`
  3. `c < 4b^2a`
  4. `c > b^2/(3a)`
  5. `c < b^2/(3a)`
Show Answers Only

`D`

Show Worked Solution

`text(If no stationary points,)`

♦♦ Mean mark 29%.

`=>\ text(No solution to)\ \ f{′}(x) = 0`

`f^{′}(x) = 3ax^2 -2bx +c`
 

`text(No solution when,)`

`Delta` `< 0`
`(−2b)^2-4(3ac)` `< 0`
`3ac` `> b^2`
`:. c` `> (b^2)/(3a)`

`=>   D`

Filed Under: Polynomials, The Derivative Function and its Graph Tagged With: Band 5, smc-2830-50-SP problems, smc-750-30-Discriminant, smc-750-50-Cubics

Copyright © 2014–2025 SmarterEd.com.au · Log in