Aussie Maths & Science Teachers: Save your time with SmarterEd
Part of the graph of a function `f`, where `a>0`, is shown below.
The average value of the function `f` over the interval `[2a, a]` is
`B`
`text(Average Value)`
`=(1)/(a-(-2a))int_(-2a)^(a)f(x)\ dx`
`=(1)/(3a)(int_(-2a)^(0)(-(3)/(2)x-a)\ dx+int_(0)^(a)(2x-a)\ dx)`
`=(a)/(3)`
`=>B`
Let `h` be a function with an average value of 2 over the interval `[0, 6].`
The graph of `h` over this interval could be
`C`
The graph of a function `f:\ text{[−2, p]} -> R` is shown below.
The average value of `f` over the interval `text{[−2, p]}` is zero.
The area of the shaded region is `25/8.`
If the graph is a straight line, for `0 <= x <= p`, then the value of `p` is
A. `2`
B. `5`
C. `5/4`
D. `5/2`
E. `25/4`
`D`
`text(Shaded Area)` | `=\ text(Area below)\ \ f(x)\ text(from)\ \ 0 to p` |
`1/2 p^2` | `= 25/8` |
`p^2` | `=25/4` |
`:. p` | `= 5/2,quadp > 0` |
`=> D`
`D`