SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C4 2020 HSC 18

  1. Differentiate  `e^(2x) (2x + 1)`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Hence, find  `int(x + 1)e^(2x)\ dx`.  (1 marks)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `4e^(2x)(x + 1)`
  2. `1/4 e^(2x)(2x + 1) + c`
Show Worked Solution
a.    `y` `= e^(2x) (2x + 1)`
  `(dy)/(dx)` `= 2e^(2x)(2x + 1) + 2e^(2x)`
    `= 2e^(2x)(2x + 2)`
    `= 4e^(2x)(x + 1)`

♦ Mean mark part (b) 40%.

 

b.    `int(x + 1)e^(2x)dx` `= 1/4 int 4e^(2x)(x + 1)`
    `= 1/4 e^(2x)(2x + 1) + c`

Filed Under: Exponential Calculus (Y12), L&E Integration Tagged With: Band 3, Band 5, smc-1203-50-Diff then Integrate, smc-965-60-Diff then integrate

Calculus, 2ADV C4 2016 HSC 12d

  1. Differentiate  `y = xe^(3x)`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Hence find the exact value of  `int_0^2 e^(3x) (3 + 9x)\ dx`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `e^(3x) (1 + 3x)`
  2. `6e^6`
Show Worked Solution

i.  `y = xe^(3x)`

`text(Using product rule:)`

`(dy)/(dx)` `= x · 3e^(3x) + 1 · e^(3x)`
  `= e^(3x) (1 + 3x)`

 

ii.  `int_0^2 e^(3x) (3 + 9x)\ dx`

`= 3 int_0^2 e^(3x) (1 + 3x)\ dx`

`= 3 [x e^(3x)]_0^2`

`= 3 (2e^6 – 0)`

`= 6e^6`

Filed Under: Exponential Calculus, Exponential Calculus (Y12), Integrals, L&E Integration, Logs and Exponentials - Differentiation Tagged With: Band 3, Band 4, smc-1202-20-Definite Integrals, smc-1203-50-Diff then Integrate, smc-965-10-Differentiation (base e), smc-965-40-Definite Integrals, smc-965-60-Diff then integrate

Copyright © 2014–2025 SmarterEd.com.au · Log in