SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C2 SM-Bank 2 MC

Given the function  \(f(x)=\log _{10} x^x\), which of the following expressions is equal to \(f^{\prime}(x)\) ?

  1. \(\log _e 10+\log _e x\)
  2. \(\dfrac{\log _e 10+1}{\log _e 10}\)
  3. \(\dfrac{1}{\log _e 10}+\log _x 10\)
  4. \(\dfrac{1}{\log _e x}+\log _{10} x\)
Show Answers Only

\(\Rightarrow B\)

Show Worked Solution

\(f(x)=\log _{10} x^x=x \log _{10} x\)

\(\text{Using product rule:}\)

\(f^{\prime}(x)\) \(=x \cdot \dfrac{1}{x \cdot \ln 10}+1 \cdot \log _{10} x\)
  \(=\dfrac{1}{\ln 10}+\log _{10} x\)
  \(=\dfrac{1}{\ln 10}+\dfrac{\ln x}{\ln 10}\)
  \(=\dfrac{\ln x+1}{\ln 10}\)

 
\(\Rightarrow B\)

Filed Under: L&E Differentiation (Y12) Tagged With: Band 5, smc-967-15-Exponentials (base a), smc-967-30-Product Rule

Calculus, 2ADV C2 SM-Bank 14

Differentiate  `pi^(2x)`.  (2 marks)

Show Answers Only

`2log_e(pi) * pi^(2x)`

Show Worked Solution
COMMENT: `pi` is a constant. See HSC exam reference sheet for differentiating  `a^(f(x))`.
`y` `=pi^(2x)`  
`dy/dx` `=log_e(pi) * 2 * pi^(2x)`  
  `=2log_e(pi) *pi^(2x)`  

Filed Under: L&E Differentiation (Y12) Tagged With: Band 4, smc-965-20-Differentiation (base a), smc-967-15-Exponentials (base a), smc-967-50-Chain Rule, smc-967-60-New Reference Sheet

Calculus, 2ADV C2 SM-Bank 4

Differentiate  `5^(x^2)5x`.  (2 marks)

Show Answers Only

`5^(x^2 + 1)(ln5*2x^2 + 1)`

Show Worked Solution

COMMENT: See HSC exam reference sheet when differentiating  `5^x`.

`y` `= 5^(x^2) * 5x`
`(dy)/(dx)` `= ln5*2x*5^(x^2)*5x + 5^(x^2)*5`
  `=5^(x^2)(ln5*10x^2 + 5)`
  `=5^(x^2 + 1)(ln5*2x^2 + 1)`

Filed Under: Exponential Calculus (Y12), L&E Differentiation (Y12) Tagged With: Band 4, smc-965-20-Differentiation (base a), smc-967-15-Exponentials (base a), smc-967-30-Product Rule, smc-967-50-Chain Rule, smc-967-60-New Reference Sheet

Calculus, 2ADV C2 EQ-Bank 3

Differentiate  `3x  6^x`.  (2 marks)

Show Answers Only

`3*6^x(xln6 +1)`

Show Worked Solution

COMMENT: See HSC exam reference sheet when differentiating  `6^x`.

`y` `= 3x * 6^x`
`(dy)/(dx)` `= 3*6^x + ln6 * 6^x *3x`
  `= 3*6^x(1 + xln6)`

Filed Under: Exponential Calculus (Y12), L&E Differentiation (Y12) Tagged With: Band 3, smc-965-20-Differentiation (base a), smc-967-15-Exponentials (base a), smc-967-30-Product Rule, smc-967-60-New Reference Sheet

Calculus, 2ADV C2 EQ-Bank 2

Differentiate with respect to `x`:

`10^(5x^2 - 3x)`.  (2 marks)

Show Answers Only

`(dy)/(dx) = ln 10  (10x – 3) * 10^(5x^2 – 3x)`

Show Worked Solution

`y = 10^(5x^2 – 3x)`

TIP: The new Advanced reference sheet can be used here!

`(dy)/(dx) = ln 10  (10x – 3) * 10^(5x^2 – 3x)`

 

Filed Under: Exponential Calculus (Y12), L&E Differentiation (Y12) Tagged With: Band 3, smc-965-20-Differentiation (base a), smc-967-15-Exponentials (base a), smc-967-50-Chain Rule, smc-967-60-New Reference Sheet

Copyright © 2014–2025 SmarterEd.com.au · Log in