If `f(x)=log_2(x^(2x))`, which expression is equal to `f^(′)(x)`?
- `2/(x^(2x)ln2`
- `2/ln2 + 2log_2x`
- `log_2x+2/ln2`
- `2/ln2 xx log_2(x^(2x-1))`
Aussie Maths & Science Teachers: Save your time with SmarterEd
If `f(x)=log_2(x^(2x))`, which expression is equal to `f^(′)(x)`?
`B`
`f(x)` | `=log_2(x^(2x))` | |
`=2x log_2x` | ||
`=(2x lnx)/ln2` |
`f^(′)(x)` | `=1/ln2 (2x*1/x + 2lnx)` | |
`=2/ln2 + (2lnx)/ln2` | ||
`=2/ln2 + 2log_2x` |
`=> B`
Let `y= (x + 5) log_e (x)`.
Find `(dy)/(dx)` when `x = 5`. (2 marks)
`log_e 5 +2`
`(dy)/(dx)` | `= 1 xx log_e x + (x + 5) * (1)/(x)` |
`= log_e x + (x + 5)/(x)` |
`:. dy/dx|_(x=5)=log_e 5 +2`
Differentiate with respect to `x`:
`log_e x^x`. (2 marks)
`1 + log_ex`
`y` | `=log_e x^x` | |
`=xlog_ex` | ||
`dy/dx` | `=x*1/x + log_ex` | |
`=1 + log_ex` |
Differentiate `log_2 x^2` with respect to `x`. (2 marks)
`2/(xln2)`
`y` | `= log_2 x^2` |
`(dy)/(dx)` | `= {:d/(dx):} ((lnx^2)/(ln2))` |
`= 1/(ln2) · d/(dx)(ln x^2)` | |
`= 1/(ln2) · (2x)/(x^2)` | |
`= 2/(xln2)` |
What is the derivative of `sin(ln x),` where `x > 0`?
`D`
`y` | `= sin (ln x)` |
`(dy)/(dx)` | `= cos (ln x) xx d/(dx) (ln x)` |
`= cos (ln x) xx 1/x` | |
`= (cos (ln x))/x` |
`=> D`
Differentiate `x^3 ln x`. (2 marks)
`x^2 (3 ln\ x + 1)`
`y = x^3 ln\ x`
`text(Using the product rule:)`
`(dy)/(dx)` | `= 3x^2 * ln\ x + x^3 * 1/x` |
`= x^2 (3 ln\ x + 1)` |
What is the derivative of `ln (cos x)?`
`B`
`y` | `= ln (cos x)` |
`(dy)/(dx)` | `= (-sin x)/(cos x)` |
`= -tan x` |
`=> B`
Differentiate `y = (x + 4) ln\ x`. (2 marks)
`ln\x + 4/x +1`
`y = (x + 4) ln\ x`
`text(Using the product rule)`
`(dy)/(dx)` | `= d/(dx) (x + 4) * ln x + (x + 4) d/(dx) ln\ x` |
`= ln x + (x + 4) 1/x` | |
`= ln x + 4/x + 1` |
Find the equation of the tangent to `y = log_ex` at the point `(e, 1)`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`y = x/e`
`y = log_ex`
`dy/dx = 1/x`
`text(At)\ \ (e, 1),`
`m = 1/e`
`text(Equation of tangent,)\ \ m = 1/e,\ text(through)\ (e, 1)`
`y – y_1` | `= m(x – x_1)` |
`y – 1` | `= 1/e(x -e)` |
`y – 1` | `= x/e – 1` |
`y` | `= x/e` |
Differentiate with respect to `x`:
`x^2 log_e x` (2 marks)
`x + 2x log_e x`
`y` | `= x^2 log_e x` |
`dy/dx` | `= x^2 * 1/x + 2x * log_e x` |
`= x + 2x log_e x` |
Differentiate `ln(5x+2)` with respect to `x`. (2 marks)
`5/(5x+2)`
`y` | `=ln(5x+2)` |
`dy/dx` | `=5/(5x+2)` |
Differentiate with respect to `x`
`(x-1)log_ex` (2 marks)
`log_ex+1-1/x`
`y` | `=(x-1)log_ex` |
`dy/dx` | `=1(log_ex)+(x-1)1/x` |
`=log_ex+1-1/x` |