Let `f(x)=sin(2x)`.
Find the value of `x`, for `0 < x < pi`, for which `f^(′)(x)=-sqrt3` AND `f^(″)(x)=2`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `f(x)=sin(2x)`.
Find the value of `x`, for `0 < x < pi`, for which `f^(′)(x)=-sqrt3` AND `f^(″)(x)=2`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`(7pi)/12`
`f^(′)(x)=2cos(2x)`
`2cos(2x)` | `=-sqrt3` | |
`cos(2x)` | `=- sqrt3/2` | |
`2x` | `=pi-pi/6,\ \ pi+pi/6` | |
`=(5pi)/6,\ \ (7pi)/6` | ||
`x` | `=(5pi)/12,\ \ (7pi)/12` |
`f^(″)(x)=-4sin(2x)`
`-4sin(2x)` | `=2` | |
`sin(2x)` | `=- 1/2` | |
`2x` | `=pi+pi/6,\ \ 2pi-pi/6` | |
`=(7pi)/6,\ \ (11pi)/6` | ||
`x` | `=(7pi)/12,\ \ (22pi)/12` |
`:.x=(7pi)/12\ \ text{(satisfies both equations)}`
Let `f(x) = x^2 cos(3x)`.
Find `f^{′}(pi/3)`. (2 marks)
`-(2pi)/3`
`f(x)` | `= x^2 cos 3x` | |
`f^{′}(x)` | `= x^2 ⋅ 3(-sin 3x) + 2x cos 3x` | |
`f^{′}(pi/3)` | `= (pi/3)^2 ⋅ 3 (-sin pi) + 2 (pi/3) cos pi` | |
`= -(2pi)/3` |
What is the derivative of `ln (cos x)?`
`B`
`y` | `= ln (cos x)` |
`(dy)/(dx)` | `= (-sin x)/(cos x)` |
`= -tan x` |
`=> B`
Differentiate `cosx/x` with respect to `x`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`(-x sinx – cos x)/(x^2)`
`y = cos x/x`
`text(Let)` | `\ \ u = cos x` | `u prime = – sin x` |
`\ \ v = x` | `v prime = 1` |
`text(Using quotient rule:)`
`dy/dx` | `= (u prime v – u v prime)/(v^2)` |
`= (-sinx *x – cos x*1)/x^2` | |
`= (-x sin x – cos x)/(x^2)` |
Differentiate with respect to `x`.
`(cos x)/(x^2)`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`(-x sin x\ – 2 cos x)/(x^3)`
`y = cosx/(x^2)`
`u = cos x` | `\ \ \ \ \ \ u prime = – sin x` |
`v = x^2` | `\ \ \ \ \ \ v prime = 2x` |
`text(Using the quotient rule,)`
`dy/dx` | `= (u prime v\ – v prime u)/(v^2)` |
`= (- sin x * x^2\ – 2x * cos x)/(x^4)` | |
`= (- x sin x\ – 2 cos x)/(x^3)` |
What is the derivative of `x/cosx`?
`A`
`y = x/cosx`
`text(Let)\ \ \ \ ` | `u = x\ \ \ \ \ \ \ ` | `u prime = 1` |
`v = cosx\ \ \ \ \ \ \ ` | `v prime =-sin x` |
`:.\ dy/dx` | `= (vu prime\-uv prime)/v^2` |
`= (cosx 1-x (- sinx))/(cosx)^2` | |
`= (cosx + xsinx)/(cos^2x)` |
`=> A`