Differentiate `sin x/(x + 1)` with respect to `x`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Differentiate `sin x/(x + 1)` with respect to `x`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`dy/dx = {cos x (x + 1) – sin x} / (x + 1)^2`
`y = sin x / (x + 1)`
`text(Using)\ \ d/dx (u/v) = (u^{\prime} v – uv^{\prime})/v^2`
`u` | `= sin x` | `v` | `= x + 1` |
`u^{\prime}` | `= cos x` | `\ \ \ v^{\prime}` | `= 1` |
`:.dy/dx = {cos x (x + 1) – sin x} / (x + 1)^2`
Differentiate `(sin x)/x`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`(x cos x – sin x)/x^2`
`y = (sin x)/x`
`text(Let)\ \ u` | `=sin x` | `u prime` | `= cos x` |
`v` | `=x` | `v prime` | `=1` |
`(dy)/(dx)` | `= (u prime v – u v prime)/v^2` |
`= (x cos x – sin x)/x^2` |
Differentiate with respect to `x`:
`sinx/(x+4)`. (2 marks)
`(cosx (x+4) – sin x)/((x + 4)^2)`
`y = sinx/(x + 4)`
`u` | `= sinx` | `\ \ \ \ \ u’` | `= cos x` |
`v` | `= x + 4` | `v’` | `= 1` |
`dy/dx` | `= (u’v – uv’)/v^2` |
`= (cos x (x + 4) – sin x)/(x+4)^2` |
Differentiate `cosx/x` with respect to `x`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`(-x sinx – cos x)/(x^2)`
`y = cos x/x`
`text(Let)` | `\ \ u = cos x` | `u prime = – sin x` |
`\ \ v = x` | `v prime = 1` |
`text(Using quotient rule:)`
`dy/dx` | `= (u prime v – u v prime)/(v^2)` |
`= (-sinx *x – cos x*1)/x^2` | |
`= (-x sin x – cos x)/(x^2)` |
Differentiate `x/sinx` with respect to `x`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`(sin x\ – x cos x)/(sin^2x)`
`y = x/sinx`
`u = x` | `\ \ \ \ \ u prime = 1` |
`v = sin x` | `\ \ \ \ \ v prime = cos x` |
`text(Using)\ \ d/dx (uv) = (u prime v\ – uv prime)/(v^2),`
`dy/dx` | `= (1 * sinx \ – x * cos x)/((sin x)^2)` |
`= (sin x\ – x cos x)/(sin^2x)` |
What is the derivative of `x/cosx`?
`A`
`y = x/cosx`
`text(Let)\ \ \ \ ` | `u = x\ \ \ \ \ \ \ ` | `u prime = 1` |
`v = cosx\ \ \ \ \ \ \ ` | `v prime =-sin x` |
`:.\ dy/dx` | `= (vu prime\-uv prime)/v^2` |
`= (cosx 1-x (- sinx))/(cosx)^2` | |
`= (cosx + xsinx)/(cos^2x)` |
`=> A`