Let `f(x)=sin(2x)`.
Find the value of `x`, for `0 < x < pi`, for which `f^(′)(x)=-sqrt3` AND `f^(″)(x)=2`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `f(x)=sin(2x)`.
Find the value of `x`, for `0 < x < pi`, for which `f^(′)(x)=-sqrt3` AND `f^(″)(x)=2`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`(7pi)/12`
`f^(′)(x)=2cos(2x)`
`2cos(2x)` | `=-sqrt3` | |
`cos(2x)` | `=- sqrt3/2` | |
`2x` | `=pi-pi/6,\ \ pi+pi/6` | |
`=(5pi)/6,\ \ (7pi)/6` | ||
`x` | `=(5pi)/12,\ \ (7pi)/12` |
`f^(″)(x)=-4sin(2x)`
`-4sin(2x)` | `=2` | |
`sin(2x)` | `=- 1/2` | |
`2x` | `=pi+pi/6,\ \ 2pi-pi/6` | |
`=(7pi)/6,\ \ (11pi)/6` | ||
`x` | `=(7pi)/12,\ \ (22pi)/12` |
`:.x=(7pi)/12\ \ text{(satisfies both equations)}`
The function `f(theta) = sin^3(2 theta)`.
If `f′(theta) = 6 cos(2 theta) - 6 cos^n (2 theta)`, find the value of `n`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`3`
`f(theta)` | `= sin^3(2 theta)` |
`= (sin(2theta))^3` |
`f′(theta)` | `= 3 xx 2cos(2 theta) xx sin^2(2 theta)` |
`= 6 cos(2 theta)(1 – cos^2(2 theta))` | |
`= 6 cos (2 theta) – 6 cos^3(2 theta)` |
`:. \ n = 3`
Differentiate with respect to `x`:
`e^(tan(2x))` (2 marks)
`2 sec^2(2x)* e^(tan(2x))`
`y` | `=e^(tan(2x))` |
`dy/dx` | `= d/(dx)tan(2x) xx e^(tan(2x))` |
`= 2 sec^2(2x)* e^(tan(2x))` |
What is the derivative of `sin(ln x),` where `x > 0`?
`D`
`y` | `= sin (ln x)` |
`(dy)/(dx)` | `= cos (ln x) xx d/(dx) (ln x)` |
`= cos (ln x) xx 1/x` | |
`= (cos (ln x))/x` |
`=> D`
Differentiate with respect to `x`:
`(1 + tan x)^10`. (2 marks)
`10 sec^2 x \ (1 + tan x)^9`
`y = (1 + tan x)^10`
`(dy)/(dx)` | `= 10 (1 + tan x)^9 xx d/(dx) (tan x)` |
`= 10 sec^2 x \ (1 + tan x)^9` |
Differentiate with respect to `x`:
`(1 + sin x)^5`. (2 marks)
`5 cos x\ (1 + sinx)^4`
`y` | `= (1 + sinx)^5` |
`dy/dx` | `= 5 (1 + sinx)^4 xx d/(dx)(sinx)` |
`= 5 cos x (1 + sinx)^4` |
Differentiate `(sinx -1)^8`. (2 marks)
`8cosx (sinx -1)^7`
`y= (sinx – 1)^8`
`dy/dx` | `=8 (sinx -1)^7 xx d/dx (sinx -1)` |
`=8 (sinx – 1)^7 xx cosx` | |
`=8cosx (sinx – 1)^7` |