Find all the values of `theta`, where `0^@ <=theta <= 360^@`, such that
`sin(theta-60^@)=-sqrt3/2` (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find all the values of `theta`, where `0^@ <=theta <= 360^@`, such that
`sin(theta-60^@)=-sqrt3/2` (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`theta=0^@, 300^@ and 360^@`
`sin60^@=sqrt3/2\ \ =>\ \ text{Base angle}\ =60^@`
`=>\ text{sin is negative in 3rd and 4th quadrants}`
`sin(theta-60^@)` | `=180+60, 360-60` | |
`=240^@, 300^@` |
`theta-60^@=240^@\ \ =>\ \ theta=300^@`
`theta-60^@=300^@\ \ =>\ \ theta=360^@`
`text{Consider}\ theta = 0^@`
`sin(0-60^@)=sin(-60^@)=-sqrt3/2`
`:.theta=0^@, 300^@ and 360^@`
Let `f(x) = sin((2pix)/3)`.
Solve the equation `sin((2pix)/3) = -sqrt3/2` for `0<=x<=3` (2 marks)
`x = 2, 5/2`
`sin((2pix)/3) = -sqrt3/2`
`=>\ text(Base angle)\ = pi/3`
`(2 pi x)/3` | `=(4pi)/3, (5pi)/3, (10pi)/3, …` |
`:.x` | `=2 or 5/2, \ \ \ (0<=x<=3)` |
Solve the equation `sin (x/2) = -1/2` for `2 pi<=x<= 4 pi` (2 marks)
`x = (7 pi)/3, (11 pi)/3`
`x/2` | `=pi/6 + pi, 2pi – pi/6, 2pi + (pi/6 +pi), …` |
`=(7pi)/6, (11pi)/6, (19pi)/6, …` | |
`:. x` | `=(7pi)/3, (11pi)/3, (19pi)/3, …` |
`text(Given)\ \ \2 pi<=x<= 4 pi`
`:. x = (7 pi)/3, (11 pi)/3`
Solve the equation
`sin (2x + pi/3) = 1/2\ \ text(for)\ \ 0<= x <=pi` (2 marks)
`x = pi/4, (11 pi)/12`
`sin (2x + pi/3) = 1/2`
`=>\ text(Base angle is)\ \ pi/6`
`(2x + pi/3)` | `= pi/6, (5pi)/6, (13pi)/6, (17pi)/6, …` |
`2x` | `= – pi/6, pi/2, (11pi)/6, (15pi)/6, …` |
`x` | `= – pi/12, pi/4, (11pi)/12, (15pi)/12, …` |
`:. x = pi/4, (11 pi)/12\ \ (0<=x<=pi)`
Solve `sin (x/2) = 1/2` for `0 <= x <= 2pi.` (2 marks)
`x = pi/3,\ \ (5 pi)/3`
`sin\ x/2 = 1/2\ \ text(for)\ \ 0 <= x <= 2pi`
`=>\ text(Base angle) = pi/6,`
`x/2` | `= pi/6, pi – pi/6, 2pi + pi/6, …` |
`= pi/6, (5 pi)/6, (13 pi)/6, …` |
`:. x = pi/3,\ \ (5 pi)/3\ \ text(for)\ \ 0 <= x <= 2 pi`
Solve `sqrt 2\ sin\ x = 1` for `0 <= x <= 2 pi`. (2 marks)
`pi/4 , (3 pi)/4`
`sqrt 2\ sin\ x` | `= 1` | `\ \ \ \ \ \ \ 0 <= x <= 2 pi` |
`sin\ x` | `= 1/sqrt 2` |
`=>sin\ pi/4 = 1/sqrt 2\ \ text(and sin is positive in)`
`text(1st/2nd quadrants,)`
`:. x` | `= pi/4\ ,\ pi – pi/4` |
`= pi/4\ ,\ (3 pi)/4` |
Find the solutions of `2 sin theta = 1` for `0 <= theta <= 2 pi`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`pi/6, (5 pi)/6`
`2 sin theta` | `= 1,\ \ \ \ 0 <= theta <= 2 pi` |
`sin theta` | `= 1/2` |
`=> sin (pi/6) = 1/2 \ \ text(and sin is positive)`
`text(in the 1st/2nd quadrants)`
`:. theta` | `= pi/6, pi – pi/6` |
`= pi/6, (5 pi)/6` |
Solve `2 sin^2 (x/3) = 1` for `-pi <= x <= pi`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x = -(3pi)/4, (3pi)/4`
`2 sin^2 (x/3)` | `= 1\ \ text(for)\ \ -pi <= x <= pi` |
`sin^2 (x/3)` | `= 1/2` |
`sin (x/3)` | `= +- 1/sqrt2` |
`text(When)\ sin (x/3) = 1/sqrt2`
`x/3` | `= pi/4, (3pi)/4` |
`x` | `= (3pi)/4, (9pi)/4` |
`text(When)\ sin (x/3) = – 1/sqrt2`
`x/3` | `= – pi/4, -(3pi)/4` |
`x` | `= -(3pi)/4, -(9pi)/4` |
`:.\ x = -(3pi)/4\ \ text(or)\ \ (3pi)/4\ \ text(for)\ \ -pi <= x <= pi`
Find the exact values of `x` such that `2sin x = - sqrt3`, where `0 <= x <= 2pi`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`x = (4pi)/3,\ (5pi)/3`
`2sinx` | `=- sqrt3\ \ text(where)\ \ 0 <= x <= 2pi` |
`sin x` | `= -sqrt3/2` |
`sin (pi/3)` | `= sqrt3/2` |
`text(S)text(ince)\ sin x\ text(is negative in)\ 3^text(rd) // 4^text(th)\ text(quadrants)`
`x` | `= pi + pi/3,\ 2pi\ – pi/3` |
`= (4pi)/3,\ (5pi)/3\ \ text(radians)` |