Determine the number of values of \(\theta\) in the range \(0^{\circ} \leqslant \theta \leqslant 360^{\circ}\) that satisfy the equation
\((\tan \theta-\sqrt{3})(\cos^{2}\theta-1)=0 \)
- \(3\)
- \(4\)
- \(5\)
- \(6\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Determine the number of values of \(\theta\) in the range \(0^{\circ} \leqslant \theta \leqslant 360^{\circ}\) that satisfy the equation
\((\tan \theta-\sqrt{3})(\cos^{2}\theta-1)=0 \)
\(C\)
\(\tan \theta = \sqrt{3}\ \rightarrow \text{2 solutions} \)
\(\cos^{2}\theta\) | \(=1\) | |
\(\cos\theta\) | \(= \pm 1\) | |
\(\theta\) | \(=0^{\circ}, 180^{\circ}, 360^{\circ}\ \rightarrow \text{3 solutions} \) |
\(\Rightarrow C\)
Solve `2cos(2x) = −sqrt3` for `x`, where `0 <= x <= pi`. (2 marks)
`x = (5pi)/12, (7pi)/12`
`cos(2x)` | `= – sqrt3/2` |
`2x` | `= (5pi)/6, 2pi – (5pi)/6, 2pi+(5pi)/6` |
`=(5pi)/6, (7pi)/6, (17pi)/6,\ …` | |
`:. x` | `=(5pi)/12, (7pi)/12\ \ \ (0 <= x <= pi)` |
Solve the equation `cos((3x)/2) = 1/2` for `−pi/2<=x<=pi/2`. (2 marks)
`x = ± (2pi)/9`
`cos((3x)/2) = 1/2`
`=>\ text(Base angle)\ =pi/3`
`(3x)/2` | `= (-pi)/3, pi/3, (5pi)/3, …` |
`:. x` | `=(-2pi)/9, (2pi)/9, (10pi)/9` |
`= (-2pi)/9, (2pi)/9\ \ \ (−pi/2<=x<=pi/2)` |
Solve `cos\ theta =1/sqrt2` for `0 ≤ theta ≤ 2pi`. (2 marks)
`pi/4, (7pi)/4`
`cos\ theta = 1/sqrt2,\ \ \ 0 ≤ theta ≤ 2pi`
`text(S)text(ince)\ cos\ pi/4 = 1/sqrt2,\ \ text(and cos)`
`text(is positive in 1st/4th quadrants)`
`theta` | `= pi/4, 2pi − pi/4` |
`= pi/4, (7pi)/4` |
Find the exact value of `theta` such that `2 cos theta = 1`, where `0 <= theta <= pi/2`. (2 marks)
`theta = pi/3\ text(radians)`
`2 cos theta` | `= 1` |
`cos theta` | `= 1/2` |
`:.\ theta` | `= pi/3,\ \ \ \ 0 <= theta <= pi/2` |