Determine whether the function \(f(x)=2x^3-5x\) is even, odd or neither. Show all working. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Determine whether the function \(f(x)=2x^3-5x\) is even, odd or neither. Show all working. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(f(x)=2x^{3}-5x\)
\(\text{Function is odd if:}\ \ f(-x)=-f(x) \)
\(f(-x)\) | \(=2(-x)^{3}-5(-x) \) | |
\(=-2x^{3}+5x \) | ||
\(=-(2x^{3}-5x)\) | ||
\(=-f(x)\) |
\(\therefore f(x)\ \text{is odd.}\)
\(f(x)=2x^{3}-5x\)
\(\text{Function is odd if:}\ \ f(-x)=-f(x) \)
\(f(-x)\) | \(=2(-x)^{3}-5(-x) \) | |
\(=-2x^{3}+5x \) | ||
\(=-(2x^{3}-5x)\) | ||
\(=-f(x)\) |
\(\therefore f(x)\ \text{is odd.}\)
Let \(f(x)\) be any function with domain all real numbers.
Which of the following is an even function, regardless of the choice of \(f(x)\)?
\(D\)
\(\text{Even function}\ \rightarrow \ f(x)=f(-x)\)
\(\text{Consider the function}\ \ f(x) = x-2\)
\( 2f(1)=-2,\ \ 2f(-1)=-6\ \ \text{(not even)}\)
\( f(f(1))=f(-1)=-3,\ \ f(f(-1))=f(-3)=-5\ \ \text{(not even)}\)
\( (f(-1))^2=(-3)^2=9,\ \ (f(1))^2=(-1)^2=1\ \ \text{(not even)}\)
\( f(1)f(-1)=-1 \times -3=3,\ \ f(-1)f(1)=-3 \times -1=3 \ \text{(possibly even)}\)
\(=>D\)