SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Probability, 2ADV S1 2024 MET2 3*

A discrete random variable \(X\) is defined using the probability distribution below, where \(k\) is a positive real number.

\begin{array} {|c|c|}
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & \ \ \ \ \text{0}\ \ \ \  \rule[-1ex]{0pt}{0pt} & \ \ \ \ \text{1}\ \ \ \ \rule[-1ex]{0pt}{0pt} & \ \ \ \ \text{2}\ \ \ \ \rule[-1ex]{0pt}{0pt} & \ \ \ \ \text{3}\ \ \ \ \rule[-1ex]{0pt}{0pt} & \ \ \ \ \text{4}\ \ \ \ \\
\hline
\rule{0pt}{2.5ex} \text{Pr} \  (X = x) \rule[-1ex]{0pt}{0pt} &  2k \rule[-1ex]{0pt}{0pt} & 3k \rule[-1ex]{0pt}{0pt} & 5k \rule[-1ex]{0pt}{0pt} & 3k \rule[-1ex]{0pt}{0pt} & 2k \\
\hline
\end{array}

Find \(\operatorname{Pr}(X<4 \mid X>1)\)   (3 marks)

--- 7 WORK AREA LINES (style=lined) ---

Show Answers Only

\(C\)

Show Worked Solution

\(2k+3k+5k+3k+2k=1\ \Rightarrow\ k=\dfrac{1}{15}\)

\(\operatorname{Pr}(X<4 \mid X>1)\) \(=\dfrac{\operatorname{Pr}(X>1)\ \cap \ \operatorname{Pr}(X<4)}{\operatorname{Pr}(X>1)}\)
  \(=\dfrac{\operatorname{Pr}(1<X<4)}{\operatorname{Pr}(X>1)}\)
  \(=\dfrac{\frac{5}{15}+\frac{3}{15}}{\frac{5}{15}+\frac{3}{15}+\frac{2}{15}}\)
  \(=\dfrac{\frac{8}{15}}{\frac{10}{15}}\)
  \(=\dfrac{4}{5}\)

Filed Under: Conditional Probability and Venn Diagrams (Y11) Tagged With: Band 4, smc-992-10-Sum of Probabilities = 1, smc-992-60-Conditional Probability

Probability, 2ADV S1 2012 MET1 4

On any given day, the number `X` of telephone calls that Daniel receives is a random variable with probability distribution given by

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & \ \ \ 0\ \ \  & \ \ \ 1\ \ \  & \ \ \ 2\ \ \  & \ \ \ 3\ \ \  \\
\hline
\rule{0pt}{2.5ex} P(X=x) \rule[-1ex]{0pt}{0pt} & 0.2 & 0.2 & 0.5 & 0.1 \\
\hline
\end{array}

  1. Find the mean of  `X`.   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  2. What is the probability that Daniel receives only one telephone call on each of three consecutive days?   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Daniel receives telephone calls on both Monday and Tuesday.

     

    What is the probability that Daniel receives a total of four calls over these two days?   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `1.5`
  2. `0.008`
  3. `29/64`
Show Worked Solution
i.    `E(X)` `= 0 xx 0.2 + 1 xx 0.2 + 2 xx 0.5 + 3 xx 0.1`
    `= 0 + .2 + 1 + 0.3`
    `= 1.5`

 

ii.   `P(1, 1, 1)` `= 0.2 xx 0.2 xx 0.2`
    `= 0.008`

 

iii.   `text(Conditional Probability:)`

♦ Mean mark 36%.

`P(x = 4 | x >= 1\ text{both days})`

`= (P(1, 3) + P(2, 2) + P(3, 1))/(P(x>=1\ text{both days}))`

`= (0.2 xx 0.1 + 0.5 xx 0.5 + 0.1 xx 0.2)/(0.8 xx 0.8)`

`= (0.02 + 0.25 + 0.02)/0.64`

`= 0.29/0.64`

`= 29/64`

Filed Under: Discrete Probability Distributions (Y11) Tagged With: Band 3, Band 4, Band 5, smc-992-20-E(X) / Mean, smc-992-60-Conditional Probability, smc-992-70-Other Probability

Probability, 2ADV S1 2009 MET1 7

The random variable `X` has this probability distribution.

\begin{array} {|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & \ \ \ 0\ \ \  & \ \ \ 1\ \ \  & \ \ \ 2\ \ \  & \ \ \ 3\ \ \  &\ \ \ 4\ \ \ \\
\hline
\rule{0pt}{2.5ex} P(X=x) \rule[-1ex]{0pt}{0pt} & 0.1 & 0.2 & 0.4 & 0.2 & 0.1 \\
\hline
\end{array}

Find

  1.  `P (X > 1 | X <= 3)`  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2.  `P (X),` the variance of  `X.`  (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `2/3`
  2. `1.2`
Show Worked Solution

i.   `P(X > 1 | X <= 3)`

`= (P(X = 2) + P(X = 3))/(1-P(X = 4))`

`= (0.4 + 0.2)/(1-0.1)`

`= 0.6/0.9`

`= 2/3`

 

ii.   `E(X)` `= 0.1 (0) + 1 (0.2) + 2 (0.4) + 3 (0.2) + 4 (0.1)`
  `= 0 + 0.2 + 0.8 + 0.6 + 0.4`
  `= 2`

 

`E(X^2)` `= 0^2 (0.1) + 1^2 (0.2) + 2^2 (0.4) + 3^2 (0.2) + 4^2 (0.1)`
  `= 0 + 0.2 + 1.6 + 1.8 + 1.6`
  `= 5.2`

 

`:.\ text(Var) (X)` `= E(X^2)-[E(X)]^2`
  `= 5.2-(2)^2`
  `= 1.2`

Filed Under: Discrete Probability Distributions (Y11) Tagged With: Band 4, smc-992-30-Var(X) / Std Dev, smc-992-60-Conditional Probability

Copyright © 2014–2025 SmarterEd.com.au · Log in