SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Statistics, 2ADV S3 2024 HSC 25

A function \(f(x)\) is defined as

\(f(x)=\left\{\begin{array}{ll} 0, & \text { for}\ \ x \lt 0 \\
1-\dfrac{x}{h}, & \text { for}\ \ 0 \leq x \leq h, \\
0, & \text { for}\ \  x \gt h \end{array}\right.\)

where \(h\) is a constant.

  1. Find the value of \(h\) such that \(f(x)\) is a probability density function.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. By first finding a formula for the cumulative distribution function, sketch its graph.   (2 marks)

    --- 7 WORK AREA LINES (style=lined) ---

  3. Find the value of the median of the probability density function \(f(x)\) . Give your answer correct to 3 decimal places.   (2 marks)

    --- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   \(h=2\)

b.   

c.   \(\text{Median}\ =0.586\)

Show Worked Solution

a.   \(f(x)\ \text{is a PDF if:}\)

\(\displaystyle \int_{0}^{h} 1-\dfrac{x}{h}\,dx\) \(=1\)  
\(\Big[x-\dfrac{x^2}{2h} \Big]_0^{h}\) \(=1\)  
\(h-\dfrac{h}{2}\) \(=1\)  
\(h\) \(=2\)  

  
b.
   \( \displaystyle \int 1-\dfrac{x}{2}\,dx = x-\dfrac{x^2}{4} + c\)

\(\text{At}\ \ x=0, \ \ F(0)=0,\ \ c=0 \)

\(f(x)=\left\{\begin{array}{ll} 0, & \text { for}\ \ x \lt 0 \\
x-\dfrac{x^2}{4}, & \text { for}\ \ 0 \leq x \leq 2, \\
1, & \text { for}\ \  x \gt 2 \end{array}\right.\)
 

♦♦ Mean mark (b) 27%.

c.   \(\text{Let}\ \ m=\ \text{median of}\ f(x) \)

\(\displaystyle \int_0^{m} 1-\dfrac{x}{2}\,dx\)  \(=0.5\)  
\(\Big[ x-\dfrac{x^2}{4} \Big]_0^m\) \(=0.5\)  
\(m-\dfrac{m^2}{4}\) \(=0.5\)  
\(4m-m^2\) \(=2\)  
\(m^2-4m+2\) \(=0\)  
\((m-2)^2\) \(=2\)  
\(m\) \(=2 \pm \sqrt{2}\)  

 

\(\therefore \ \text{Median}\) \(=2-\sqrt{2}\ \ (x \in [0,2]) \)   
  \(=0.586\ \text{(3 d.p.)}\)  
♦♦ Mean mark (c) 38%.

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, Band 5, smc-994-10-Median, smc-994-40-Cumulative Distribution Fn, smc-994-50-Linear PDF

Statistics, 2ADV S3 2023 HSC 29

A continuous random variable \(X\) has probability density function \(f(x)\) given by
 

\(f(x)=\left\{\begin{array}{cl} 12 x^2(1-x), & \text { for } 0 \leq x \leq 1 \\ 0, & \text { for all other values of } x \end{array}\right.\)

 

  1. Find the mode of \(X\).  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Find the cumulative distribution function for the given probability density function.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  3. Without calculating the median, show that the mode is greater than the median.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   \(x=\dfrac{2}{3} \)

b.   \(F(x)=\left\{\begin{array}{cl} 0, & \text { for } x \lt 0 & \\ 4x^3-3x^4, & \text { for } 0 \leq x \leq 1 \\ 1, & \text { for } x > 1 \end{array}\right.\)

c.    \(\text{See Worked Solutions}\)

Show Worked Solution

a.    \(\text{Mode}\ \rightarrow \ f(x)_\text{max} \)

\(f(x)=12 x^2(1-x)=12x^2-12x^3 \)

\(f^{′}(x)=24x-36x^2=12x(2-3x) \)

\(f^{″}(x)=24-72x \)

♦ Mean mark (a) 45%.

\(\text{Max/min when}\ f^{′}(x)=0 \)

\(2-3x=0\ \ ⇒\ \ x=\dfrac{2}{3} \ \ (x \neq 0) \)

\(\text{At}\ x=\dfrac{2}{3}, \ f^{″}(x)=24-72(\dfrac{2}{3})=-24<0 \)

\(\therefore \ \text{Mode (max) at}\ x=\dfrac{2}{3} \)
  

b.     \(F(x)\) \(= \int 12x^2-12x^3\ dx\)
    \(=4x^3-3x^4+c \)

 
\(\text{At}\ x=0, F(x)=0\ \ ⇒\ \ c=0 \)

\(F(x)=4x^3-3x^4 \)
 

\(F(x)=\left\{\begin{array}{cl} 0, & \text { for } x \lt 0 & \\ 4x^3-3x^4, & \text { for } 0 \leq x \leq 1 \\ 1, & \text { for } x > 1 \end{array}\right.\)

 
c.
    \(\text{Find}\ F\Big{(}\dfrac{2}{3}\Big{)}: \)

\(F\Big{(}\dfrac{2}{3}\Big{)} \) \(=4 \times \Big{(}\dfrac{2}{3}\Big{)}^3-3 \times \Big{(}\dfrac{2}{3}\Big{)}^4 \)  
  \(=\dfrac{16}{27}>0.5 \)  

 
\(\therefore\ \text{Mode > median}\)

♦♦♦ Mean mark (c) 17%.

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, Band 5, Band 6, smc-994-10-Median, smc-994-20-Mode, smc-994-40-Cumulative Distribution Fn, smc-994-60-Polynomial PDF

Statistics, 2ADV S3 SM-Bank 20

A continuous random variable `X` has a probability density function given by
 

`f(x) = {{:(Cx + D),(0):}\ \ \ \ {:(2 <= x <= 5),(text(elsewhere)):}:}`
 

where `C` and `D` are constants.

Find the exact values of `C` and `D`, given the median of  `X`  is 4.  (4 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`C = 1/6`

`D = −1/4`

Show Worked Solution

`int_2^5 Cx + D\ dx = 1`

`[C/2 x^2 + Dx]_2^5 = 1`

`[(25/2 C + 5D) – (2C + 2D)]` `= 1`
`21/2C + 3D` `= 1`
`21C + 6D` `= 2\ \ …\ (1)`

 
`text(Using median)\ \ X = 4:`

`[C/2 x^2 + Dx]_2^4 = 0.5`

`[(8C + 4D) – (2C + 2D)]` `= 0.5`
`6C + 2D` `= 0.5\ \ …\ (2)`

  
`text(Multiply:)\ (2) xx 3`

`18C + 6D = 1.5\ \ …\ (3)`
 

`text(Subtract:)\ \ (1) – (3)`

`3C` `= 1/2`
`:. C` `= 1/6`

 
`text{Substitute into (1):}`

`21/6 + 6D` `= 2`
`6D` `= −9/6`
`:. D` `= −1/4`

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, smc-994-10-Median, smc-994-50-Linear PDF

Statistics, 2ADV S3 SM-Bank 10

A continuous random variable, \(X\), has a probability density function given by

\(f(x)= \begin{cases}\dfrac{1}{5}\,e^{-\frac{x}{5}} & x \geq 0 \\
\ \\
0 & x<0
\end{cases}\) 

The median of \(X\) is  \(m\).

Determine the value of  \(m\).  (3 marks)

Show Answers Only

\(-5 \log _e\left(\dfrac{1}{2}\right)\) or \(5 \log _e(2)\) or \(\log _e 32\)

Show Worked Solution

\(\begin{aligned} \dfrac{1}{5} \int_0^m e^{-\frac{x}{5}} d x & =\dfrac{1}{2} \\
\dfrac{1}{5} \times(-5)\left[e^{-\frac{x}{5}}\right]_0^m & =\dfrac{1}{2} \\
{\left[-e^{-\frac{x}{5}}\right]_0^m } & =\dfrac{1}{2} \\
-e^{-\frac{m}{5}}+1 & =\frac{1}{2} \\ e^{-\frac{m}{5}} & =\dfrac{1}{2} \\
-\frac{m}{5} & =\log _e\left(\dfrac{1}{2}\right)
\end{aligned}\)

\(\therefore m=-5 \log _e\left(\dfrac{1}{2}\right)\) (or \(5 \log _e(2)\), or \(\log _e 32\) )

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, smc-994-10-Median, smc-994-90-Other PDF functions

Statistics, 2ADV S3 SM-Bank 7 MC

A probability density function  \(f(x)\)  is given by

\(f(x)= \begin{cases}
\dfrac{1}{12}\left(8 x-x^3\right) & 0 \leq x \leq 2 \\
\ \\
0 & \text{elsewhere }
\end{cases}\)

The median  \(m\)  of this function satisfies the equation

  1. \(-m^4+16 m^2-6=0\)
  2. \(m^4-16 m^2=0\)
  3. \(m^4-16 m^2+24=0.5\)
  4. \(m^4-16 m^2+24=0\)
Show Answers Only

\(D\)

Show Worked Solution

\(\begin{aligned} \int_0^m \dfrac{1}{12}\left(8 x-x^3\right) d x & =0.5 \\
{\left[\dfrac{1}{12}\left(4 x^2-\dfrac{x^4}{4}\right)\right]_0^m } & =0.5 \\
4 m^2-\dfrac{m^4}{4} & =6 \\
16 m^2-m^4 & =24 \\ m^4-16 m^2+24 & =0
\end{aligned}\)

\(\Rightarrow D\)

Filed Under: Probability Density Functions (Y12) Tagged With: Band 5, smc-994-10-Median, smc-994-60-Polynomial PDF

Copyright © 2014–2025 SmarterEd.com.au · Log in