SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Statistics, 2ADV S3 EQ-Bank 2

A probability density function for a random variable, \(X\), is defined by the following function
 

\(f(x)=\left\{\begin{array}{rl}
k x(2-x), & 0 \leqslant x \leqslant 2 \\
0, & \text{for all other } x
\end{array}\right.\)
 

Determine the value of \(k\) and hence write the equation of the Cumulative Density Function.   (3 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

\(F(x)=\dfrac{3}{4} x^2-\dfrac{1}{4} x^3\)

Show Worked Solution
  \(\displaystyle \int_0^2 k x(2-x)\) \(=1\)
  \(\displaystyle \int_0^2 2 k x-k x^2\) \(=1\)
  \(\left[k x^2-\dfrac{k}{3} x^3\right]_0^2\) \(=1\)
  \(\left(4 k-\dfrac{8 k}{3}\right)-0\) \(=1\)
  \(4 k\) \(=3\)
  \(k\) \(=\dfrac{3}{4}\)

 

\(F(x)\) \(=\displaystyle \int 2 \times \frac{3}{4} x-\frac{3}{4} x^2\, d x\)
  \(=\displaystyle \int \frac{3}{2} x-\frac{3}{4} x^2\, d x\)
  \(=\dfrac{3}{4} x^2-\dfrac{1}{4} x^3+c\)

 
\(\text{When} \ \ x=0, F(x)=0 \ \Rightarrow \ c=0\)

\(\therefore\ F(x)=\dfrac{3}{4} x^2-\dfrac{1}{4} x^3\)

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, smc-994-40-Cumulative Distribution Fn

Statistics, 2ADV S3 2024 HSC 25

A function \(f(x)\) is defined as

\(f(x)=\left\{\begin{array}{ll} 0, & \text { for}\ \ x \lt 0 \\
1-\dfrac{x}{h}, & \text { for}\ \ 0 \leq x \leq h, \\
0, & \text { for}\ \  x \gt h \end{array}\right.\)

where \(h\) is a constant.

  1. Find the value of \(h\) such that \(f(x)\) is a probability density function.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. By first finding a formula for the cumulative distribution function, sketch its graph.   (2 marks)

    --- 7 WORK AREA LINES (style=lined) ---

  3. Find the value of the median of the probability density function \(f(x)\) . Give your answer correct to 3 decimal places.   (2 marks)

    --- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   \(h=2\)

b.   

c.   \(\text{Median}\ =0.586\)

Show Worked Solution

a.   \(f(x)\ \text{is a PDF if:}\)

\(\displaystyle \int_{0}^{h} 1-\dfrac{x}{h}\,dx\) \(=1\)  
\(\Big[x-\dfrac{x^2}{2h} \Big]_0^{h}\) \(=1\)  
\(h-\dfrac{h}{2}\) \(=1\)  
\(h\) \(=2\)  

  
b.
   \( \displaystyle \int 1-\dfrac{x}{2}\,dx = x-\dfrac{x^2}{4} + c\)

\(\text{At}\ \ x=0, \ \ F(0)=0,\ \ c=0 \)

\(f(x)=\left\{\begin{array}{ll} 0, & \text { for}\ \ x \lt 0 \\
x-\dfrac{x^2}{4}, & \text { for}\ \ 0 \leq x \leq 2, \\
1, & \text { for}\ \  x \gt 2 \end{array}\right.\)
 

♦♦ Mean mark (b) 27%.

c.   \(\text{Let}\ \ m=\ \text{median of}\ f(x) \)

\(\displaystyle \int_0^{m} 1-\dfrac{x}{2}\,dx\)  \(=0.5\)  
\(\Big[ x-\dfrac{x^2}{4} \Big]_0^m\) \(=0.5\)  
\(m-\dfrac{m^2}{4}\) \(=0.5\)  
\(4m-m^2\) \(=2\)  
\(m^2-4m+2\) \(=0\)  
\((m-2)^2\) \(=2\)  
\(m\) \(=2 \pm \sqrt{2}\)  

 

\(\therefore \ \text{Median}\) \(=2-\sqrt{2}\ \ (x \in [0,2]) \)   
  \(=0.586\ \text{(3 d.p.)}\)  
♦♦ Mean mark (c) 38%.

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, Band 5, smc-994-10-Median, smc-994-40-Cumulative Distribution Fn, smc-994-50-Linear PDF

Statistics, 2ADV S3 2023 HSC 29

A continuous random variable \(X\) has probability density function \(f(x)\) given by
 

\(f(x)=\left\{\begin{array}{cl} 12 x^2(1-x), & \text { for } 0 \leq x \leq 1 \\ 0, & \text { for all other values of } x \end{array}\right.\)

 

  1. Find the mode of \(X\).  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Find the cumulative distribution function for the given probability density function.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  3. Without calculating the median, show that the mode is greater than the median.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   \(x=\dfrac{2}{3} \)

b.   \(F(x)=\left\{\begin{array}{cl} 0, & \text { for } x \lt 0 & \\ 4x^3-3x^4, & \text { for } 0 \leq x \leq 1 \\ 1, & \text { for } x > 1 \end{array}\right.\)

c.    \(\text{See Worked Solutions}\)

Show Worked Solution

a.    \(\text{Mode}\ \rightarrow \ f(x)_\text{max} \)

\(f(x)=12 x^2(1-x)=12x^2-12x^3 \)

\(f^{′}(x)=24x-36x^2=12x(2-3x) \)

\(f^{″}(x)=24-72x \)

♦ Mean mark (a) 45%.

\(\text{Max/min when}\ f^{′}(x)=0 \)

\(2-3x=0\ \ ⇒\ \ x=\dfrac{2}{3} \ \ (x \neq 0) \)

\(\text{At}\ x=\dfrac{2}{3}, \ f^{″}(x)=24-72(\dfrac{2}{3})=-24<0 \)

\(\therefore \ \text{Mode (max) at}\ x=\dfrac{2}{3} \)
  

b.     \(F(x)\) \(= \int 12x^2-12x^3\ dx\)
    \(=4x^3-3x^4+c \)

 
\(\text{At}\ x=0, F(x)=0\ \ ⇒\ \ c=0 \)

\(F(x)=4x^3-3x^4 \)
 

\(F(x)=\left\{\begin{array}{cl} 0, & \text { for } x \lt 0 & \\ 4x^3-3x^4, & \text { for } 0 \leq x \leq 1 \\ 1, & \text { for } x > 1 \end{array}\right.\)

 
c.
    \(\text{Find}\ F\Big{(}\dfrac{2}{3}\Big{)}: \)

\(F\Big{(}\dfrac{2}{3}\Big{)} \) \(=4 \times \Big{(}\dfrac{2}{3}\Big{)}^3-3 \times \Big{(}\dfrac{2}{3}\Big{)}^4 \)  
  \(=\dfrac{16}{27}>0.5 \)  

 
\(\therefore\ \text{Mode > median}\)

♦♦♦ Mean mark (c) 17%.

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, Band 5, Band 6, smc-994-10-Median, smc-994-20-Mode, smc-994-40-Cumulative Distribution Fn, smc-994-60-Polynomial PDF

Statistics, 2ADV S3 2022 HSC 30

A continuous random variable \(X\) has cumulative distribution function given by

\(F(x)= \begin{cases}
1 & x>e^3 \\
\ \\
\dfrac{1}{k}\, \ln x & 1 \leq x \leq e^3 . \\
\ \\
0 & x<1\end{cases}\)

  1. Show that  \(k = 3\).  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Given that  \(P(X < c)=2P(X > c)\), find the exact value of \(c\).  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. \(\text{Proof (See Worked Solutions)}\)
  2. \(e^2\)
Show Worked Solution

a.  \(\text{Show} \ \ k=3\)

\begin{aligned}
{\left[\dfrac{1}{k} \, \ln x\right]_1^{e^3} } & =1 \\
\dfrac{1}{k}\, \ln \left(e^3\right)-\dfrac{1}{k}\, \ln 1 & =1 \\
\dfrac{1}{k}(3)-\frac{1}{k}(0) & =1 \\
k & =3 \ldots \text{as required}
\end{aligned}


♦♦ Mean mark (a) 38%.
b.    \(P(X<c)\) \(=\left[\dfrac{1}{3}\, \ln x\right]_0^c\)
    \(=\dfrac{1}{3}\, \ln c\)

\begin{aligned}
2 P(X>c) & =2 P(1-P(X<c)) \\
& =2\left(1-\frac{1}{3} \ln c\right)
\end{aligned}

\(\text { Given } P(X<c)=2 P(X>c)\)

\begin{aligned}
\dfrac{1}{3}\, \ln c & =2-\dfrac{2}{3}\, \ln c \\
\ln c & =2 \\
\therefore c & =e^2
\end{aligned}


♦♦♦ Mean mark (b) 19%.

Filed Under: Probability Density Functions (Y12) Tagged With: Band 5, Band 6, smc-994-40-Cumulative Distribution Fn

Statistics, 2ADV S3 2021 HSC 33

People are given a maximum of six hours to complete a puzzle. The time spent on the puzzle, in hours, can be modelled using the continuous random variable \(X\) which has probability density function

\(f(x)= \begin{cases}
\dfrac{A x}{x^2+4} & \text{for } 0 \leq x \leq 6,(\text { where } A>0) \\
\ \\
0 & \text {for all other values of } x
\end{cases}\)

The graph of the probability density function is shown below. The graph has a local maximum.
 

  1. Show that  \(A=\dfrac{2}{\ln 10}\).  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Show that the mode of \(X\) is two hours.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Show that  \(P(X<2)=\log _{10} 2\).  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  4. The Intelligence Quotient (IQ) scores of people are normally distributed with a mean of 100 and standard deviation of 15.
  5. It has been observed that the puzzle is generally completed more quickly by people with a high IQ.
  6. It is known that 80% of people with an IQ greater than 130 can complete the puzzle in less than two hours.
  7. A person chosen at random can complete the puzzle in less than two hours.
  8. What is the probability that this person has an IQ greater than 130? Give your answer correct to three decimal places.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. \(\text{See Worked Solution}\)
  2. \(\text{See Worked Solution}\)
  3. \(\text{See Worked Solution}\)
  4. \(0.066\)
Show Worked Solution

a.  \(\displaystyle\int_0^6 \dfrac{A x}{x^2+4} \, d x=1\)

\(\begin{aligned} \dfrac{A}{2} \int_0^6 \dfrac{2 x}{x^2+4} d x & =1 \\
\dfrac{A}{2}\left[\ln \left(x^2+4\right)\right]_0^6 & =1 \\
\dfrac{A}{2}(\ln 40-\ln 4) & =1 \\
\dfrac{A}{2} \ln \left(\dfrac{40}{4}\right) & =1 \\
\dfrac{A}{2} \ln 10 & =1 \\
A & =\dfrac{2}{\ln 10}\end{aligned}\)

b.  \(\text{Mode \(\rightarrow f(x)\) is a MAX}\)

♦♦♦ Mean mark part (b) 24%.

\(\begin{aligned}
f(x) & =\dfrac{A x}{x^2+4} \\
f^{\prime}(x) & =\dfrac{A\left(x^2+4\right)-A x(2 x)}{\left(x^2+4\right)^2} \\
& =\dfrac{A x^2+4 A-2 A x^2}{\left(x^2+4\right)^2} \\
& =\dfrac{A\left(4-x^2\right)}{\left(x^2+4\right)^2}
\end{aligned}\)

\(\text{\(f(x)\) max occurs when \(f^{\prime}(x)=0\) :}\)

\(\begin{aligned}
4-x^2 & =0 \\
x & =2 \quad(x>0)
\end{aligned}\)

♦♦ Mean mark part (c) 30%.
c.    \(P(X<2)\) \(=\displaystyle \int_0^2 \dfrac{A x}{x^2+4} d x\)
    \(=\dfrac{A}{2}\left[\ln \left(x^2+4\right)\right]_0^2\)
    \(=\dfrac{1}{\ln 10}(\ln 8-\ln 4)\)
    \(=\dfrac{1}{\ln 10}\left(\ln \dfrac{8}{4}\right)\)
    \(=\dfrac{1}{\ln 10} \cdot \ln 2\)
    \(=\log _{10} 2\)

 

d.   \(z \text{-score}(130)=\dfrac{x-\mu}{\sigma}=\dfrac{130-100}{15}=2\)

♦♦ Mean mark part (d) 25%.

\(P(z>2)=2.5 \%\)

\begin{aligned}
P(\text { IQ }>130 \mid x<2) & =\dfrac{P(\text { IQ }>130 \cap X<2)}{P(X<2)} \\
& =\dfrac{0.8 \times 0.025}{\log _{10} 2} \\
& =0.0664 \ldots \\
& =0.066
\end{aligned}

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, Band 5, Band 6, smc-994-20-Mode, smc-994-40-Cumulative Distribution Fn, smc-994-90-Other PDF functions, smc-994-95-Conditional Probability

Statistics, 2ADV S3 2021 HSC 30

The number of hours for which light bulbs will work before failing can be modelled by the random variable `X` with cumulative distribution function

`F(x) = { {:(1 - e^(-0.01x)),(0):} {: (\ \ x >= 0), (\ \ x < 0):} :}`

Jane sells light bulbs and promises that they will work for longer than exactly 99% of all light bulbs.

Find how long, according to Jane’s promise, a light bulb bought from her should work. Give your answer in hours, rounded to two decimal places.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(460.52 hours.)`

Show Worked Solution

`text(Find)\ x\ text(when)\ \ F(x) > 0.99:`

♦♦ Mean mark 22%.
`1 – e^(-0.01x)` `= 0.99`
`e^(-0.01x)` `= 0.01`
`-0.01x` `= ln(0.01)`
`x` `= (ln(0.01))/(-0.01)`
  `= 460.517 …`
  `= 460.52\ text(hours)`

 
`:.\ text(Light bulbs should work at least 460.52 hours.)`

Filed Under: Probability Density Functions (Y12) Tagged With: Band 5, smc-994-40-Cumulative Distribution Fn

Statistics, 2ADV S3 EQ-Bank 1

A probability density function can be used to model the lifespan of a termite, `X`, in weeks, is given by
 

`f(x) = {(k(36 - x^2)),(0):}\ \ \ {:(3 <= x <= 6),(text(otherwise)):}`
 

  1. Show that the value of  `k`  is  `1/45`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the cumulative distribution function.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Find the probability that a termite's lifespan is greater than 5 weeks.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions)`
  2. `F(x) = {(0),(1/135 (108t – t^3  – 297)),(1):}\ \ \ {:(x < 3),(3 <= x <= 6),(x > 6):}`
  3. `17/135`
Show Worked Solution
i.    `k int_3^6 36 – x^2\ dx` `= 1`
  `k[36x – (x^3)/3]_3^6` `= 1`
  `k[(216 – 72)-(108 – 9)]` `= 1`
  `45k` `= 1`
  `k` `= 1/45`

 

ii.    `F(t)` `= int_(-∞)^t f(x)\ dx`
    `= int_3^t f(x)\ dx`
    `= 1/45 int_3^t 36 – x^2\ dx`
    `= 1/45 [36x – (x^3)/3]_3^t`
    `= 1/135[108x – x^3]_3^t`
    `= 1/35[(108t – t^3) – (324 – 27)]`
    `= 1/135(108t – t^3 – 297)`

 
`:. F(x) = {(0),(1/135 (108t – t^3  – 297)),(1):}\ \ \ {:(x < 3),(3 <= x <= 6),(x > 6):}`

 

iii.    `P(X > 5)` `= 1 – F(5)`
    `= 1 – 1/135(108 xx 5 – 5^3 – 297)`
    `= 1 – 118/135`
    `= 17/135`

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, Band 5, smc-994-30-Other Probability, smc-994-40-Cumulative Distribution Fn, smc-994-60-Polynomial PDF

Statistics, 2ADV S3 EQ-Bank 16

A probability density function is defined by
 

`f(x) = {(a, \ text(for)\ \ 0 <= x <= 4),(3a, \ text(for)\  4 < x <= 8):}`
 

  1. Find the value of  `a`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Sketch the probability density function.  (1 mark)

    --- 6 WORK AREA LINES (style=lined) ---

  3. Find an expression for the cumulative distribution function.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `1/16`
  2.  
  3. `F(x) = {(x/16, text(for)\ 0 <= x <= 4),((3x)/16 – 1/2, text(for)\ 4 < x <= 8):}`
Show Worked Solution

i.   `int_0^4 a\ dx = [ax]_0^4 = 4a`

`int_4^8 3a\ dx = [3ax]_4^8 = 24a – 12a = 12a`

`4a + 12a` `= 1`
`a` `= 1/16`

 

ii.   

 

iii.   `text(When)\ \ 0 <= x <= 4:`

`F(x) = int 1/16\ dx = x/16 + C`

`F(0) = 0 \ => \ C = 0`

`F(x) = x/16\ \ …\ (1)`
 

`text(When)\ \ 4 < x <= 8:`

`F(x) = int 3/16\ dx = (3x)/16 + C`

`F(4) = 1/4\ \ (text{see (1) above})`

COMMENT: Understand why you can check your equation here by confirming  `F(8)=1`

`(3 xx 4)/16 + C` `= 1/4`
`C` `= −1/2`

 
`F(x) = (3x)/16 – 1/2`
 

`:. F(x) = {(x/16, \ text(for)\ \ 0 <= x <= 4),((3x)/16 – 1/2, \ text(for)\ \ 4 < x <= 8):}`

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, Band 5, smc-994-40-Cumulative Distribution Fn, smc-994-90-Other PDF functions

Copyright © 2014–2025 SmarterEd.com.au · Log in