SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Statistics, 2ADV S3 2025 HSC 21

A continuous random variable \(X\) has a probability density function given by

\(f(x)= \begin{cases}\ 0 & \quad x<1 \\ \dfrac{1}{x} & \quad 1 \leq x \leq e \\ \ 0 & \quad x>e\end{cases}\)

  1. Find the mode of the given probability density function. Justify your answer.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Calculate the value of the 25th percentile \(\left(Q_1\right)\) of this distribution. Give your answer correct to 3 decimal places.   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    
     

\(\text{Graph is monotonically decreasing.}\)

\(\text{Mode:} \ \ x=1\)

b.   \(Q_1=1.284 \)

Show Worked Solution

a.    
         

\(\text{Graph is monotonically decreasing.}\)

\(f(x)_{\text{max}}\ \text{occurs on interval when}\ \ x=1.\)

\(\text{Mode:} \ \ x=1\)
 

b.    \(\text{Find \(k\) such that} \ P(X<k)=0.25:\)

\(\displaystyle \int_1^{Q_1} \frac{1}{x}\) \(=0.25\)
\(\ln Q_1-\ln 1\) \(=0.25\)
\(Q_1\) \(=e^{0.25}\)
  \(=1.284 \ \text{(3 d.p.)}\)

Filed Under: Probability Density Functions (Y12) Tagged With: Band 5, smc-994-20-Mode, smc-994-90-Other PDF functions

Statistics, 2ADV S3 SM-Bank 20

A random variable \(X\) has the probability density function \(f(x)\) given by

\(f(x)= \begin{cases}
\dfrac{k}{x^2} & 1 \leq x \leq 2 \\
\ \\
0 & \text {elsewhere }
\end{cases}\)

where \(k\) is a positive real number.

Show that  \(k = 2\).  (2 marks)

Show Answers Only

\(\text{See Worked Solution}\)

Show Worked Solution

♦ Mean mark 48%.

\(\begin{aligned} \int_1^2 \dfrac{k}{x^2} d x & =1 \\
k\left[-\dfrac{1}{x}\right]_1^2 & =1 \\
k\left(-\dfrac{1}{2}+1\right) & =1 \\
\dfrac{k}{2} & =1 \\
\therefore k & =2 \quad \ldots \text{ as required }
\end{aligned}\)

 

Filed Under: Probability Density Functions (Y12) Tagged With: Band 5, smc-994-90-Other PDF functions

Statistics, 2ADV S3 2021 HSC 33

People are given a maximum of six hours to complete a puzzle. The time spent on the puzzle, in hours, can be modelled using the continuous random variable \(X\) which has probability density function

\(f(x)= \begin{cases}
\dfrac{A x}{x^2+4} & \text{for } 0 \leq x \leq 6,(\text { where } A>0) \\
\ \\
0 & \text {for all other values of } x
\end{cases}\)

The graph of the probability density function is shown below. The graph has a local maximum.
 

  1. Show that  \(A=\dfrac{2}{\ln 10}\).  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Show that the mode of \(X\) is two hours.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Show that  \(P(X<2)=\log _{10} 2\).  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  4. The Intelligence Quotient (IQ) scores of people are normally distributed with a mean of 100 and standard deviation of 15.
  5. It has been observed that the puzzle is generally completed more quickly by people with a high IQ.
  6. It is known that 80% of people with an IQ greater than 130 can complete the puzzle in less than two hours.
  7. A person chosen at random can complete the puzzle in less than two hours.
  8. What is the probability that this person has an IQ greater than 130? Give your answer correct to three decimal places.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. \(\text{See Worked Solution}\)
  2. \(\text{See Worked Solution}\)
  3. \(\text{See Worked Solution}\)
  4. \(0.066\)
Show Worked Solution

a.  \(\displaystyle\int_0^6 \dfrac{A x}{x^2+4} \, d x=1\)

\(\begin{aligned} \dfrac{A}{2} \int_0^6 \dfrac{2 x}{x^2+4} d x & =1 \\
\dfrac{A}{2}\left[\ln \left(x^2+4\right)\right]_0^6 & =1 \\
\dfrac{A}{2}(\ln 40-\ln 4) & =1 \\
\dfrac{A}{2} \ln \left(\dfrac{40}{4}\right) & =1 \\
\dfrac{A}{2} \ln 10 & =1 \\
A & =\dfrac{2}{\ln 10}\end{aligned}\)

b.  \(\text{Mode \(\rightarrow f(x)\) is a MAX}\)

♦♦♦ Mean mark part (b) 24%.

\(\begin{aligned}
f(x) & =\dfrac{A x}{x^2+4} \\
f^{\prime}(x) & =\dfrac{A\left(x^2+4\right)-A x(2 x)}{\left(x^2+4\right)^2} \\
& =\dfrac{A x^2+4 A-2 A x^2}{\left(x^2+4\right)^2} \\
& =\dfrac{A\left(4-x^2\right)}{\left(x^2+4\right)^2}
\end{aligned}\)

\(\text{\(f(x)\) max occurs when \(f^{\prime}(x)=0\) :}\)

\(\begin{aligned}
4-x^2 & =0 \\
x & =2 \quad(x>0)
\end{aligned}\)

♦♦ Mean mark part (c) 30%.
c.    \(P(X<2)\) \(=\displaystyle \int_0^2 \dfrac{A x}{x^2+4} d x\)
    \(=\dfrac{A}{2}\left[\ln \left(x^2+4\right)\right]_0^2\)
    \(=\dfrac{1}{\ln 10}(\ln 8-\ln 4)\)
    \(=\dfrac{1}{\ln 10}\left(\ln \dfrac{8}{4}\right)\)
    \(=\dfrac{1}{\ln 10} \cdot \ln 2\)
    \(=\log _{10} 2\)

 

d.   \(z \text{-score}(130)=\dfrac{x-\mu}{\sigma}=\dfrac{130-100}{15}=2\)

♦♦ Mean mark part (d) 25%.

\(P(z>2)=2.5 \%\)

\begin{aligned}
P(\text { IQ }>130 \mid x<2) & =\dfrac{P(\text { IQ }>130 \cap X<2)}{P(X<2)} \\
& =\dfrac{0.8 \times 0.025}{\log _{10} 2} \\
& =0.0664 \ldots \\
& =0.066
\end{aligned}

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, Band 5, Band 6, smc-994-20-Mode, smc-994-40-Cumulative Distribution Fn, smc-994-90-Other PDF functions, smc-994-95-Conditional Probability

Statistics, 2ADV S3 EQ-Bank 16

A probability density function is defined by
 

`f(x) = {(a, \ text(for)\ \ 0 <= x <= 4),(3a, \ text(for)\  4 < x <= 8):}`
 

  1. Find the value of  `a`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Sketch the probability density function.  (1 mark)

    --- 6 WORK AREA LINES (style=lined) ---

  3. Find an expression for the cumulative distribution function.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `1/16`
  2.  
  3. `F(x) = {(x/16, text(for)\ 0 <= x <= 4),((3x)/16 – 1/2, text(for)\ 4 < x <= 8):}`
Show Worked Solution

i.   `int_0^4 a\ dx = [ax]_0^4 = 4a`

`int_4^8 3a\ dx = [3ax]_4^8 = 24a – 12a = 12a`

`4a + 12a` `= 1`
`a` `= 1/16`

 

ii.   

 

iii.   `text(When)\ \ 0 <= x <= 4:`

`F(x) = int 1/16\ dx = x/16 + C`

`F(0) = 0 \ => \ C = 0`

`F(x) = x/16\ \ …\ (1)`
 

`text(When)\ \ 4 < x <= 8:`

`F(x) = int 3/16\ dx = (3x)/16 + C`

`F(4) = 1/4\ \ (text{see (1) above})`

COMMENT: Understand why you can check your equation here by confirming  `F(8)=1`

`(3 xx 4)/16 + C` `= 1/4`
`C` `= −1/2`

 
`F(x) = (3x)/16 – 1/2`
 

`:. F(x) = {(x/16, \ text(for)\ \ 0 <= x <= 4),((3x)/16 – 1/2, \ text(for)\ \ 4 < x <= 8):}`

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, Band 5, smc-994-40-Cumulative Distribution Fn, smc-994-90-Other PDF functions

Statistics, 2ADV S3 SM-Bank 10

A continuous random variable, \(X\), has a probability density function given by

\(f(x)= \begin{cases}\dfrac{1}{5}\,e^{-\frac{x}{5}} & x \geq 0 \\
\ \\
0 & x<0
\end{cases}\) 

The median of \(X\) is  \(m\).

Determine the value of  \(m\).  (3 marks)

Show Answers Only

\(-5 \log _e\left(\dfrac{1}{2}\right)\) or \(5 \log _e(2)\) or \(\log _e 32\)

Show Worked Solution

\(\begin{aligned} \dfrac{1}{5} \int_0^m e^{-\frac{x}{5}} d x & =\dfrac{1}{2} \\
\dfrac{1}{5} \times(-5)\left[e^{-\frac{x}{5}}\right]_0^m & =\dfrac{1}{2} \\
{\left[-e^{-\frac{x}{5}}\right]_0^m } & =\dfrac{1}{2} \\
-e^{-\frac{m}{5}}+1 & =\frac{1}{2} \\ e^{-\frac{m}{5}} & =\dfrac{1}{2} \\
-\frac{m}{5} & =\log _e\left(\dfrac{1}{2}\right)
\end{aligned}\)

\(\therefore m=-5 \log _e\left(\dfrac{1}{2}\right)\) (or \(5 \log _e(2)\), or \(\log _e 32\) )

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, smc-994-10-Median, smc-994-90-Other PDF functions

Statistics, 2ADV S3 SM-Bank 5 MC

The function  `f(x)`  is a probability density function of a continuous random variable with the rule
 

`f(x) = {(ae^x, 0 <= x <= 1), (ae, 1 < x <= 2), (\ 0, text(otherwise)):}`
 

The value of `a` is

A.   `1`

B.   `1/e`

C.   `1/(2e)`

D.   `1/(2e - 1)`

Show Answers Only

`D`

Show Worked Solution

`text(Total area) = 1`

`int_0^1 ae^x\ dx + int_1^2 ae\ dx` `= 1`
`[ae^x]_0^1 + [ae*x]_1^2` `=1`
`[ae-a] + [2ae-ae]` `=1`
`2ae-a` `=1`
`a(2e-1)` `=1`
`:. a` `= 1/(2e – 1)`

 
`=>   D`

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, smc-994-90-Other PDF functions

Copyright © 2014–2025 SmarterEd.com.au · Log in