SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Statistics, STD2 S1 2019 HSC 19

The heights, in centimetres, of 10 players on a basketball team are shown.

170, 180, 185, 188, 192, 193, 193, 194, 196, 202

Is the height of the shortest player on the team considered an outlier? Justify your answer with calculations. (3 marks)

Show Answers Only

`text(See Worked Solutions)`

Show Worked Solution

`Q_1 = 185, \ Q_3 = 194`

Mean mark 51%.
COMMENT: The last statement must be made to achieve full marks here!

`IQR = 194 – 185 = 9`

`text(Shortest player = 170)`

`text(Outlier height:)`

`Q_1 – 1.5 xx IQR ` `= 185 – 1.5 xx 9`
  `= 171.5`

 
`:.\ text(S)text(ince 170 < 171.5, 170 is an outlier.)`

Filed Under: Measures of Centre and Spread (Std2-2027), Summary Statistics - No Graph (Std 2), Summary Statistics - No graph (Y12) Tagged With: Band 4, common-content, smc-6312-30-IQR and Outliers, smc-824-30-IQR and Outliers, smc-999-30-IQR and Outliers

Statistics, STD2 S1 2018 HSC 26e

A cumulative frequency table for a data set is shown.

\begin{array} {|c|c|}
\hline
\ \ \ \ \ \ \ \textit{Score}\ \ \ \ \ \ \   & \ \ \ \ \ \textit{Cumulative}\ \ \ \ \  \\ & \textit{frequency} \\
\hline
\rule{0pt}{2.5ex} \text{1} \rule[-1ex]{0pt}{0pt} & 5 \\
\hline
\rule{0pt}{2.5ex} \text{2} \rule[-1ex]{0pt}{0pt} & 9 \\
\hline
\rule{0pt}{2.5ex} \text{3} \rule[-1ex]{0pt}{0pt} & 16 \\
\hline
\rule{0pt}{2.5ex} \text{4} \rule[-1ex]{0pt}{0pt} & 20 \\
\hline
\rule{0pt}{2.5ex} \text{5} \rule[-1ex]{0pt}{0pt} & 34 \\
\hline
\rule{0pt}{2.5ex} \text{6} \rule[-1ex]{0pt}{0pt} & 42 \\
\hline
\end{array}

What is the interquartile range of this data set?   (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`2`

Show Worked Solution

`text(42 data points ⇒ median) = text(21st + 22nd)/2`

♦♦ Mean mark 27%.

`text(Q)_1` `= 11text(th data point) = 3`
`text(Q)_3` `= 32text(nd data point) = 5`

 

`:.\ text(IQR)` `= 5 – 3`
  `= 2`

Filed Under: Measures of Centre and Spread (Std2-2027), Summary Statistics - No Graph (Std 2), Summary Statistics - No graph (Y12), Summary Statistics (Std 1) Tagged With: Band 5, common-content, smc-1131-30-IQR and Outliers, smc-1131-60-Frequency Tables, smc-6312-30-IQR and Outliers, smc-6312-60-Frequency Tables, smc-824-30-IQR and Outliers, smc-824-60-Frequency Tables, smc-999-30-IQR and Outliers, smc-999-60-Frequency Tables

Statistics, STD2 S1 2017 HSC 30a

A set of data has a lower quartile (`Q_L`) of 10 and an upper quartile (`Q_U`) of 16.

What is the maximum possible range for this set of data if there are no outliers?  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`24`

Show Worked Solution

`IQR = 16 – 10 = 6`

♦♦ Mean mark 34%.

`text(If no outliers,)`

`text(Upper limit)` `= Q_U + 1.5 xx IQR`
  `= 16 + 1.5 xx 6`
  `= 25`
`text(Lower limit)` `= Q_L – 1.5 xx IQR`
  `= 10 – 1.5 xx 6`
  `= 1`

 

`:.\ text(Maximum range)` `= 25 – 1`
  `= 24`

Filed Under: Measures of Centre and Spread (Std2-2027), Summary Statistics - No Graph (Std 2), Summary Statistics - No graph (Y12), Summary Statistics (no graph), Summary Statistics (Std 1) Tagged With: Band 5, common-content, smc-1131-30-IQR and Outliers, smc-6312-30-IQR and Outliers, smc-824-30-IQR and Outliers, smc-999-30-IQR and Outliers

Statistics, STD2 S1 2015 HSC 27d

In a small business, the seven employees earn the following wages per week:

\(\$300, \ \$490, \ \$520, \ \$590, \ \$660, \ \$680, \ \$970\)

  1.  Is the wage of $970 an outlier for this set of data? Justify your answer with calculations.  (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2.  Each employee receives a $20 pay increase.

     

     What effect will this have on the standard deviation?  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    \(\text{See Worked Solutions.} \)

ii.    \(\text{The standard deviation will remain the same.}\)

Show Worked Solution

i.    \(300, 490, 520, 590, 660, 680, 970\)

\(\text{Median}\) \(= 590\)
\(Q_1\) \(= 490\)
\(Q_3\) \(= 680\)
\(IQR\) \(= 680-490 = 190\)

 

\(\text{Outlier if \$970 is greater than:} \)

\(Q_3 + 1.5 x\times IQR = 680 + 1.5 \times 190 = \$965 \) 

\(\therefore\ \text{The wage \$970 per week is an outlier.}\)

♦ Mean mark (i) 39%.


ii. 
  \(\text{All values increase by \$20, but so too does the mean.} \)

\(\text{Therefore the spread about the new mean will not change} \)

\(\text{and therefore the standard deviation will remain the same.} \)

Filed Under: Measures of Centre and Spread (Std2-2027), Summary Statistics - No Graph (Std 2), Summary Statistics - No graph (Y12), Summary Statistics (no graph), Summary Statistics (Std 1) Tagged With: Band 4, Band 5, common-content, smc-1131-30-IQR and Outliers, smc-1131-50-Std Dev (by calc), smc-6312-30-IQR and Outliers, smc-6312-50-Std Dev (by Calc), smc-824-30-IQR and Outliers, smc-824-50-Std Dev (by calc), smc-999-30-IQR and Outliers, smc-999-50-Std Dev (by calc)

Copyright © 2014–2025 SmarterEd.com.au · Log in