SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, SPEC2-NHT 2019 VCAA 7 MC

The gradient of the line that is perpendicular to the graph of a relation at any point  `P(x, y)`  is half the gradient of the line joining `P` and the point  `Q(−1,1)`.

The relation satisfies the differential equation

  1. `(dy)/(dx) = (y - 1)/(2(x + 1))`
  2. `(dy)/(dx) = (2(x + 1))/(y + 1)`
  3. `(dy)/(dx) = (2(x - 1))/(y + 1)`
  4. `(dy)/(dx) = (x + 1)/(2(1 - y))`
  5. `(dy)/(dx) = (2(x + 1))/(1 - y)`
Show Answers Only

`E`

Show Worked Solution

`m_(PQ) = (y – 1)/(x + 1) \ => \ m_text(perp) = 1/2((y – 1)/(x + 1))`

`:. m_text(perp) · (dy)/(dx)` `= −1`
`1/2((y – 1)/(x + 1))(dy)/(dx)` `= −1`
`(dy)/(dx)` `= −2 ((x + 1)/(y – 1))`
  `= (2(x + 1))/(1 – y)`

 
`=>\ E`

Filed Under: Applied Contexts Tagged With: Band 4, smc-1184-70-Curve problems

Calculus, SPEC1 2019 VCAA 10

Find  `(dy)/(dx)`  at the point  `((sqrtpi)/sqrt6,(sqrtpi)/sqrt3)` for the curve defined by the relation  `sin(x^2) + cos(y^2) = (3sqrt2)/pi\ xy`.

Give your answer in the form  `(pi - asqrtb)/(sqrta(pi + sqrtb))`, where  `a`, `b ∈ ZZ^+`.  (5 marks)

Show Answers Only

`(pi – 2sqrt3)/(sqrt2(pi + sqrt3))`

Show Worked Solution

`2x · cos(x^2) – 2y · sin(y^2) · (dy)/(dx) = (3sqrt2)/pi(y + x · (dy)/(dx))`

`text(Substitute)\ (sqrtpi/sqrt6, sqrtpi/sqrt3)\ text(into equation:)`

`(2sqrtpi)/sqrt6 cos(pi/6) – (2sqrtpi)/sqrt3 sin(pi/3) · (dy)/(dx)` `= (3sqrt2)/pi (sqrtpi/sqrt3 + sqrtpi/sqrt6 · (dy)/(dx))`
`(2sqrtpi)/sqrt6 · sqrt3/2 – (2sqrtpi)/sqrt3 · sqrt3/2 · (dy)/(dx)` `= sqrt18/pi (sqrtpi/sqrt3 + sqrtpi/sqrt6 · (dy)/(dx))`
`sqrtpi/sqrt2 – sqrtpi · (dy)/(dx)` `= sqrt6/sqrtpi + sqrt3/sqrtpi · (dy)/(dx)`
`(dy)/(dx)(sqrt3/sqrtpi + sqrtpi)` `= sqrtpi/sqrt2 – sqrt6/sqrtpi`
`(dy)/(dx)((sqrt3 + pi)/sqrtpi)` `= (pi – sqrt12)/(sqrt2 sqrtpi)`
`(dy)/(dx)` `= (pi – sqrt12)/(sqrt2 sqrtpi) xx sqrtpi/(sqrt3 + pi)`
  `= (pi – 2sqrt3)/(sqrt2(pi + sqrt3))`

Filed Under: Applied Contexts Tagged With: Band 5, smc-1184-70-Curve problems

Calculus, SPEC2-NHT 2018 VCAA 5

A horizontal beam is supported at its endpoints, which are 2 m apart. The deflection `y` metres of the beam measured downwards at a distance `x` metres from the support at the origin `O` is given by the differential equation  `80 (d^2y)/(dx^2) = 3x-4`.
 


 

  1. Given that both the inclination, `(dy)/(dx)`, and the deflection, `y`, of the beam from the horizontal at  `x = 2`  are zero, use the differential equation above to show that  `80 y = 1/2 x^3-2x^2 + 2x`.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Find the angle of inclination of the beam to the horizontal at the origin `O`. Give your answer as a positive acute angle in degrees, correct to one decimal place.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Find the value of `x`, in metres, where the maximum deflection occurs, and find the maximum deflection, in metres.   (3 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  4. Find the maximum angle of inclination of the beam to the horizontal in the part of the beam where  `x >= 1`. Give your answer as a positive acute angle in degrees, correct to one decimal place.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `1.4^@`
  3. `x = 2/3; quad 1/135\ text(m)`
  4. `0.5^@`
Show Worked Solution
a.   `80 * int (d^2y)/(dx^2)\ dx` `= int 3x-4\ dx`
  `80* (dy)/(dx)` `= (3x^2)/2-4x + c_0`

 
`text(When)\ \ x=2,\ \ dy/dx=0:`

`80 xx 0` `= (3xx2^2)/2-4xx2 + c_0`
`c_0` `= 2`

 

`80* (dy)/(dx)` `= (3x^2)/2-4x + 2`
`80y` `= int (3x^2)/2-4x + 2\ dx`
  `= 1/2 x^3-2x^2+2x +c_1`

 

`text(When)\ \ x=2,\ \ y=0:`

`0` `= 1/2 2^3-2 xx 2^2 + 2 xx 2 + c_1`
`c_1` `= 0`

`:. 80y = 1/2x^3-2x^2 + 2x`

 

b.   `text(Find)\ \ dy/dx\ \ text(when)\ \ x=0:`

  `80 *(dy)/(dx)` `= 0-0 + 2`
  `(dy)/(dx)` `= 1/40`
  `:. theta` `= tan^(-1) (1/40) ~~ 1.4^@`

 

c.   `text(Find)\ \ x\ \ text(when)\ \ dy/dx=0:`

`x=2\ \ text(or)\ \ 2/3`

`=>y_text(max)\ \ text(occurs at)\ \ x=2/3\ \ (y=0\ \ text(at)\ \ x=2)`

 

`80*y_max` `= 1/2(2/3)^3-2(2/3)^2 + 2(2/3)`
`:. y_max` `= 1/80 xx 16/27`
  `= 1/135\ text(metres)`

 

d.   `text(Max inclination when convexity changes)\ => (d^2y)/(dx^2) =0`

`80*(d^2y)/(dx^2) = 3x-4 = 0`

`=> x = 4/3`

`text(Find)\ \ dy/dx\ \ text(when)\ \ x = 4/3 :`

`(dy)/(dx)` `= 1/80 (3/2(4/3)^2-4(4/3) + 2)`
  `= (-1)/120`

 

`theta` `= tan^(-1) (|-1/120|)`
  `~~ 0.5^@`

Filed Under: Applied Contexts Tagged With: Band 4, Band 5, Band 6, smc-1184-70-Curve problems

Calculus, SPEC2-NHT 2017 VCAA 9 MC

The gradient of the tangent to a curve at any point  `P(x, y)`  is half the gradient of the line segment joining `P` and the point  `Q(-1, 1)`.

The coordinates of points on the curve satisfy the differential equation

A.   `(dy)/(dx) = (y + 1)/(2(x - 1))`

B.   `(dy)/(dx) = (2(y - 1))/(x + 1)`

C.   `(dy)/(dx) = (x - 1)/(2(y + 1))`

D.   `(dy)/(dx) = (2(x - 1))/(y + 1)`

E.   `(dy)/(dx) = (y - 1)/(2(x + 1))`

Show Answers Only

`E`

Show Worked Solution
`m_text(tang)` `= 1/2 m_(PQ)`
`m_(PQ)` `= (y – 1)/(x – (-1))`
  `= (y – 1)/(x + 2)`

 
`:. m_text(tang) = (dy)/(dx) = (y – 1)/(2(x + 1))`

`=>   E`

Filed Under: Applied Contexts Tagged With: Band 4, smc-1184-70-Curve problems

Copyright © 2014–2025 SmarterEd.com.au · Log in