The equation \(\cos \, p x=\dfrac{1}{2}\) has 2 solutions where \(0 \leq x \leq 2 \pi\) and \(p>0\).
Find all possible values of \(p\). (3 marks)
--- 12 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
The equation \(\cos \, p x=\dfrac{1}{2}\) has 2 solutions where \(0 \leq x \leq 2 \pi\) and \(p>0\).
Find all possible values of \(p\). (3 marks)
--- 12 WORK AREA LINES (style=lined) ---
\(\dfrac{5}{6} \leqslant p<\dfrac{7}{6}\)
\(\cos (p x)=\dfrac{1}{2}\ \ \Rightarrow\ \ px=\cos ^{-1}\left(\dfrac{1}{2}\right)=\dfrac{\pi}{3}, \dfrac{5 \pi}{3}, \dfrac{7 \pi}{3}\)
\(\text{Since there are 2 solutions in range} \ \ 0 \leq x<2 \pi:\)
\(p x=\dfrac{5 \pi}{3} \ \Rightarrow \ x=\dfrac{5 \pi}{3 p}\)
| \(\dfrac{5 \pi}{3 p}\) | \(\leqslant 2 \pi\) | |
| \(3 p\) | \(\geqslant \dfrac{5}{2}\) | |
| \(p\) | \(\geqslant \dfrac{5}{6}\) |
\(\text{Since}\ \ p x=\dfrac{7 \pi}{3} \ \ \text{cannot be a solution in the range} \ \ 0 \leq x \leq 2 \pi:\)
\(p x=\dfrac{7 \pi}{3} \ \Rightarrow \ x=\dfrac{7 \pi}{3 p}\)
| \(\dfrac{7 \pi}{3 p}\) | \(>2 \pi\) | |
| \(p\) | \(<\dfrac{7}{6}\) |
\(\therefore \dfrac{5}{6} \leqslant p<\dfrac{7}{6}\)
Determine the number of values of \(\theta\) in the range \(0^{\circ} \leqslant \theta \leqslant 360^{\circ}\) that satisfy the equation
\((\tan \theta-\sqrt{3})(\cos^{2}\theta-1)=0 \)
\(C\)
\(\tan \theta = \sqrt{3}\ \rightarrow \text{2 solutions} \)
| \(\cos^{2}\theta\) | \(=1\) | |
| \(\cos\theta\) | \(= \pm 1\) | |
| \(\theta\) | \(=0^{\circ}, 180^{\circ}, 360^{\circ}\ \rightarrow \text{3 solutions} \) |
\(\Rightarrow C\)
Find all the values of `theta`, where `0^@ <=theta <= 360^@`, such that
`sin(theta-60^@)=-sqrt3/2` (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`theta=0^@, 300^@ and 360^@`
`sin60^@=sqrt3/2\ \ =>\ \ text{Base angle}\ =60^@`
`=>\ text{sin is negative in 3rd and 4th quadrants}`
| `sin(theta-60^@)` | `=180+60, 360-60` | |
| `=240^@, 300^@` |
`theta-60^@=240^@\ \ =>\ \ theta=300^@`
`theta-60^@=300^@\ \ =>\ \ theta=360^@`
`text{Consider}\ theta = 0^@`
`sin(0-60^@)=sin(-60^@)=-sqrt3/2`
`:.theta=0^@, 300^@ and 360^@`
Let `f(x) = sin((2pix)/3)`.
Solve the equation `sin((2pix)/3) = -sqrt3/2` for `0<=x<=3` (2 marks)
`x = 2, 5/2`
`sin((2pix)/3) = -sqrt3/2`
`=>\ text(Base angle)\ = pi/3`
| `(2 pi x)/3` | `=(4pi)/3, (5pi)/3, (10pi)/3, …` |
| `:.x` | `=2 or 5/2, \ \ \ (0<=x<=3)` |
Solve `2cos(2x) = −sqrt3` for `x`, where `0 <= x <= pi`. (2 marks)
`x = (5pi)/12, (7pi)/12`
| `cos(2x)` | `= – sqrt3/2` |
| `2x` | `= (5pi)/6, 2pi – (5pi)/6, 2pi+(5pi)/6` |
| `=(5pi)/6, (7pi)/6, (17pi)/6,\ …` | |
| `:. x` | `=(5pi)/12, (7pi)/12\ \ \ (0 <= x <= pi)` |
Solve the equation `cos((3x)/2) = 1/2` for `−pi/2<=x<=pi/2`. (2 marks)
`x = ± (2pi)/9`
`cos((3x)/2) = 1/2`
`=>\ text(Base angle)\ =pi/3`
| `(3x)/2` | `= (-pi)/3, pi/3, (5pi)/3, …` |
| `:. x` | `=(-2pi)/9, (2pi)/9, (10pi)/9` |
| `= (-2pi)/9, (2pi)/9\ \ \ (-pi/2<=x<=pi/2)` |
Solve the equation `sin (x/2) = -1/2` for `2 pi<=x<= 4 pi` (2 marks)
`x = (7 pi)/3, (11 pi)/3`
| `x/2` | `=pi/6 + pi, 2pi-pi/6, 2pi + (pi/6 +pi), …` |
| `=(7pi)/6, (11pi)/6, (19pi)/6, …` | |
| `:. x` | `=(7pi)/3, (11pi)/3, (19pi)/3, …` |
`text(Given)\ \ \2 pi<=x<= 4 pi`
`:. x = (7 pi)/3, (11 pi)/3`
Solve the equation
`sin (2x + pi/3) = 1/2\ \ text(for)\ \ 0<= x <=pi` (2 marks)
`x = pi/4, (11 pi)/12`
`sin (2x + pi/3) = 1/2`
`=>\ text(Base angle is)\ \ pi/6`
| `(2x + pi/3)` | `= pi/6, (5pi)/6, (13pi)/6, (17pi)/6, …` |
| `2x` | `= – pi/6, pi/2, (11pi)/6, (15pi)/6, …` |
| `x` | `= – pi/12, pi/4, (11pi)/12, (15pi)/12, …` |
`:. x = pi/4, (11 pi)/12\ \ (0<=x<=pi)`
Given `sectheta = −37/12` for `0 < theta < pi`,
find the exact value of `text(cosec)\ theta`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`37/35`
Given `cottheta = −24/7` for `−pi/2 < theta < pi/2`, find the exact value of
--- 4 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
Solve `sin (x/2) = 1/2` for `0 <= x <= 2pi.` (2 marks)
`x = pi/3,\ \ (5 pi)/3`
`sin\ x/2 = 1/2\ \ text(for)\ \ 0 <= x <= 2pi`
`=>\ text(Reference angle) = pi/6,`
| `x/2` | `= pi/6, pi-pi/6, 2pi + pi/6, …` |
| `= pi/6, (5 pi)/6, (13 pi)/6, …` |
`:. x = pi/3,\ \ (5 pi)/3\ \ text(for)\ \ 0 <= x <= 2 pi`
Solve `sqrt 2\ sin\ x = 1` for `0 <= x <= 2 pi`. (2 marks)
`pi/4 , (3 pi)/4`
| `sqrt 2\ sin\ x` | `= 1` | `\ \ \ \ \ \ \ 0 <= x <= 2 pi` |
| `sin\ x` | `= 1/sqrt 2` |
`=>sin\ pi/4 = 1/sqrt 2\ \ text(and sin is positive in)`
`text(1st/2nd quadrants,)`
| `:. x` | `= pi/4\ ,\ pi – pi/4` |
| `= pi/4\ ,\ (3 pi)/4` |
Find the solutions of `2 sin theta = 1` for `0 <= theta <= 2 pi`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`pi/6, (5 pi)/6`
| `2 sin theta` | `= 1,\ \ \ \ 0 <= theta <= 2 pi` |
| `sin theta` | `= 1/2` |
`=> sin (pi/6) = 1/2 \ \ text(and sin is positive)`
`text(in the 1st/2nd quadrants)`
| `:. theta` | `= pi/6, pi-pi/6` |
| `= pi/6, (5 pi)/6` |
Solve `cos\ theta =1/sqrt2` for `0 ≤ theta ≤ 2pi`. (2 marks)
`pi/4, (7pi)/4`
`cos\ theta = 1/sqrt2,\ \ \ 0 ≤ theta ≤ 2pi`
`text(S)text(ince)\ cos\ pi/4 = 1/sqrt2,\ \ text(and cos)`
`text(is positive in 1st/4th quadrants)`
| `theta` | `= pi/4, 2pi-pi/4` |
| `= pi/4, (7pi)/4` |
Solve `2 sin^2 (x/3) = 1` for `-pi <= x <= pi`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x = -(3pi)/4, (3pi)/4`
| `2 sin^2 (x/3)` | `= 1\ \ text(for)\ \ -pi <= x <= pi` |
| `sin^2 (x/3)` | `= 1/2` |
| `sin (x/3)` | `= +- 1/sqrt2` |
`text(When)\ sin (x/3) = 1/sqrt2`
| `x/3` | `= pi/4, (3pi)/4` |
| `x` | `= (3pi)/4, (9pi)/4` |
`text(When)\ sin (x/3) = – 1/sqrt2`
| `x/3` | `= – pi/4, -(3pi)/4` |
| `x` | `= -(3pi)/4, -(9pi)/4` |
`:.\ x = -(3pi)/4\ \ text(or)\ \ (3pi)/4\ \ text(for)\ \ -pi <= x <= pi`
Find the exact value of `theta` such that `2 cos theta = 1`, where `0 <= theta <= pi/2`. (2 marks)
`theta = pi/3\ text(radians)`
| `2 cos theta` | `= 1` |
| `cos theta` | `= 1/2` |
| `:.\ theta` | `= pi/3,\ \ \ \ 0 <= theta <= pi/2` |
Find the exact values of `x` such that `2sin x =-sqrt3`, where `0 <= x <= 2pi`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`x = (4pi)/3,\ (5pi)/3`
| `2sinx` | `=- sqrt3\ \ text(where)\ \ 0 <= x <= 2pi` |
| `sin x` | `= -sqrt3/2` |
| `sin (pi/3)` | `= sqrt3/2` |
`text(S)text(ince)\ sin x\ text(is negative in)\ 3^text(rd) // 4^text(th)\ text(quadrants)`
| `x` | `= pi + pi/3,\ 2pi-pi/3` |
| `= (4pi)/3,\ (5pi)/3\ \ text(radians)` |
What are the solutions of `sqrt3 tanx = -1` for `0<=x<=2 pi`?
`D`
| `sqrt3 tanx` | `= -1` |
| `tanx` | `= -1/sqrt3` |
`text(When)\ tanx = 1/sqrt3,\ \ x=pi/6`
`text(S)text(ince)\ tanx\ text(is negative in)\ 2^text(nd) // 4^text(th)\ text(quadrant)`
| `:. x` | ` = pi\-pi/6,\ 2 pi\-pi/6,\ …` |
| `= (5 pi)/6,\ (11 pi)/6` |
`=> D`