What is the solution to \(\abs{2 x+3}<5\) ?
- \(-4<x<1\)
- \(x<-4\) or \(x>1\)
- \(-1<x<4\)
- \(x<-1\) or \(x>4\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
What is the solution to \(\abs{2 x+3}<5\) ?
\(A\)
\(\abs{2 x+3}<5\)
\(-5 < 2x+3 <5\)
\(-8< 2x < 2\)
\(-4<x<1\)
\(\Rightarrow A\)
The diagram shows the graph of \(y=\dfrac{1}{\abs{x-5}}\). For what values of \(x\) is \(\dfrac{x}{6} \geq\dfrac{1}{\abs{x-5}}\) ? (3 marks) --- 5 WORK AREA LINES (style=lined) --- \(x \in[2,3] \cup[6, \infty)\) \(\dfrac{x}{6} \geqslant \dfrac{1}{|x-5|}\) \(x|x-5| \geqslant 6\) \(\text{Case 1:}\) \(x(x-5) \geqslant 6\) \(x^2-5 x-6 \geqslant 0\) \((x-6)(x+1) \geqslant 0\) \(x \leqslant-1\ \ \text{or}\ \ x \geqslant 6\) \(\text {By inspection of graph} \ \Rightarrow \ x \leqslant -1\ \text{is not a solution}\) \(\Rightarrow x \geqslant 6\) \(\text {Case 2: }\) \(-x(x-5) \geqslant 6\) \(-x^2+5 x-6 \geqslant 0\) \(x^2-5 x+6 \leqslant 0\) \((x-3)(x-2) \leqslant 0\) \(\Rightarrow 2 \leqslant x \leqslant 3\) \(\therefore x \in[2,3] \cup[6, \infty)\)
Solve `(x)/(2-x) >= 5`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`5/3<=x<2`
`(x)/(2-x) >= 5`
`text{Multiply b.s. by}\ \ (2-x)^2\ \ (>0):`
| `x(2-x)` | `>=5(2-x)^2` | |
| `2x-x^2` | `>=5(x^2-4x+4)` |
| `6x^2-22x+20` | `<=0` | |
| `2(3x^2-11x+10)` | `<=0` | |
| `(3x-5)(x-2)` | `<=0` |
`text{Test}\ \ x=0:`
`(-5)(-2)=10>0`
`:. 5/3<=x<2\ \ (x!=2)`
Solve the inequality `3 - x > 1/|x - 4|` for `x`, expressing your answer in interval notation. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`x ∈ (– oo, (7 – sqrt 5)/2)`
`3 – x > 1/|x – 4|`
`|x – 4| (3 – x) > 1`
`text(If)\ \ x – 4 > 0, x > 4`
| `(x – 4) (3 – x)` | `> 1` |
| `3x – x^2 – 12 + 4x` | `> 1` |
| `-x^2 + 7x – 13` | `> 0` |
`Delta = 7^2 – 4 ⋅ 1 ⋅ 13 = -3 < 0`
`=>\ text(No Solutions)`
`text(If)\ \ x – 4 < 0, x < 4`
| `-(x – 4) (3 – x)` | `> 1` |
| `x^2 – 7x + 12` | `> 1` |
| `x^2 – 7x + 11` | `> 0` |
| `x` | `= (7 +- sqrt(7^2 – 4 ⋅ 1 ⋅ 11))/2` |
| `= (7 +- sqrt 5)/2` |
`text(Combining solutions)`
`(x < (7 – sqrt 5)/2 ∪ x > (7 + sqrt 5)/2) nn x < 4`
`x ∈ (– oo, (7 – sqrt 5)/2)`
For what values of `x` is `x/(x + 1) < 2`? (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x < -2 or x > -1`
The parabola `y = x^2` meets the line `y = x + 2` at the points `(-1, 1)` and `(2, 4)`. Do NOT prove this.
By first sketching the graphs of `y = x^2` and `y = x + 2`, shade the region which simultaneously satisfies the two inequalities `y >= x^2` and `y >= x + 2`. (2 marks)
Solve `3/(|\ x - 3\ |) < 3`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x < 2\ ∪\ x > 4`
`text(Solution 1)`
`3/(|\ x – 3\ |) < 3`
| `|\ x – 3\ |` | `> 1` |
| `(x^2 – 6x + 9)` | `> 1^2` |
| `x^2 – 6x + 8` | `> 0` |
| `(x – 4)(x – 2)` | `> 0` |
`:. {x: \ x < 2\ ∪\ x > 4}`
`text(Solution 2)`
`|\ x – 3\ | > 1`
| `text(If)\ \ (x – 3)` | `> 0,\ text(i.e.)\ x >3` |
| `x – 3` | `> 1` |
| `x` | `> 4` |
`=> x > 4\ (text(satisfies both))`
| `text(If)\ \ (x – 3)` | `< 0,\ text(i.e.)\ x <3` |
| `−(x – 3)` | `> 1` |
| `−x + 3` | `> 1` |
| `x` | `< 2` |
`=> x < 2\ (text(satisfies both))`
`:. {x: \ x < 2\ ∪\ x > 4}`
A circle has centre `(5,3)` and radius 3.
--- 4 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
Solve `(2x)/(x + 1) > 1`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`:. x < −1\ \ text(or)\ \ x > 1`
`(2x)/(x + 1) > 1`
`text(If)\ \ x + 1 > 0,\ \ text(i.e.)\ \ x > −1`
| `2x` | `> x + 1` |
| `x` | `> 1` |
`=> x > 1`
`text(If)\ \ x + 1 < 0,\ \ text(i.e.)\ \ x < −1`
| `2x` | `< x + 1` |
| `x` | `< 1` |
`=> x < −1`
`:. x < −1\ \ text(or)\ \ x > 1`
The region enclosed by `y = 4 - x,\ \ y = x` and `y = 2x + 1` is shaded in the diagram below.
Which of the following defines the shaded region?
| A. | `y <= 2x + 1, qquad` | `y <= 4-x, qquad` | `y >= x` |
| B. | `y >= 2x + 1, qquad` | `y <= 4-x, qquad` | `y >= x` |
| C. | `y <= 2x + 1, qquad` | `y >= 4-x, qquad` | `y >= x` |
| D. | `y >= 2x + 1, qquad` | `y >= 4-x, qquad` | `y >= x` |
`A`
`text(Consider)\ \ y = 2x + 1,`
`text(Shading is below graph)`
`=> y <= 2x + 1`
`text(Consider)\ \ y = 4-x,`
`text(Shading is below graph)`
`=> y <= 4-x`
`=> A`
Solve `3/(2x + 5) - x > 0`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x < -3,\ \ – 5/2 < x < 1/2`
and hence sketch the graph of `y = (x − 2)/(x − 4)`. (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `y = (x − 2)/(x − 4)`
`text(Vertical asymptote at)\ x = 4`
| `lim_(x → ∞) (x − 2)/(x − 4)` | `= lim_(x → ∞) (1 − 2/x)/(1 − 4/x)=1` |
`ytext(–intercept)\ = 1/2`
`xtext(–intercept)\ = 2`
ii. `text(Find)\ \ x\ \ text(so that)\ \ (x − 2)/(x − 4) ≤ 3`
| `text(When)\ \ (x − 2)/(x − 4)` | `= 3` |
| `x − 2` | `= 3x − 12` |
| `2x` | `= 10` |
| `x` | `= 5` |
`=>(5, 3)\ \ text(is the intersection of)\ \ y = 3\ and\ y = (x − 2)/(x − 4)`
`:. (x − 2)/(x − 4) ≤ 3\ \ text(when)\ \ x < 4\ \ text(and)\ \ x ≥ 5.`
Solve `4/(x + 1) < 3.` (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x < −1\ \ text(or)\ \ x > 1/3`
Indicate the region on the number plane satisfied by `y ≥ |\ x + 1\ |.` (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`text(See Worked Solution)`
Solve the inequality `4/(x + 3) ≥ 1`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`−3 < x ≤ 1, \ \ x ≠ −3`
`text(Solution 1)`
`4/(x + 3) ≥ 1`
| `4(x + 3)` | `≥ (x + 3)^2` |
| `4x + 12` | `≥ x^2 + 6x + 9` |
| `x^2 + 2x − 3` | `≤ 0` |
| `(x + 3)(x − 1)` | `≤ 0` |
`:.−3 < x ≤ 1, \ \ x ≠ −3`
`text(Solution 2)`
| `text(If)\ (x + 3)` | `> 0` |
| `x` | `> −3` |
| `4/(x + 3)` | `≥ 1` |
| `4` | `≥ x + 3` |
| `x` | `≤ 1` |
`:. −3 < x ≤ 1`
| `text(If)\ (x + 3)` | `< 0` |
| `x` | `< −3` |
| `4/(x + 3)` | `≥ 1` |
| `4` | `≤ x + 3` |
| `x` | `≥ 1` |
| `:.\ text(No solution.)` | |
`:. −3 < x ≤ 1`
--- 4 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
Find the values of `x` for which `|\ x − 3\ | ≤ 1`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`2 ≤ x ≤ 4`
Find the values of `x` for which `|\ x + 1\ |<= 5`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`-6 <= x <= 4`
--- 8 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
| i. | ![]() |
ii. `text(Solving for)\ \ |\ 2x – 1\ | <= |\ x – 3\ |`
`text(Graph shows the statement is TRUE)`
`text(between the points of intersection.)`
`=>\ text(Intersection occurs when)`
| `(2x – 1)` | `= (x – 3)\ \ \ text(or)\ \ \ ` | `-(2x – 1)` | `= x – 3` |
| `x` | `= -2` | `-2x + 1` | `= x – 3` |
| `-3x` | `= -4` | ||
| `x` | `= 4/3` |
`:.\ text(Solution is)\ \ {x: -2 <= x <= 4/3}`
Solve `(x^2 + 5)/x > 6`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`0<x<1\ \ text(or)\ \ x>5`
Solve the inequality `(x + 3)/(2x) > 1`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`0 < x < 3`
`text(Solution 1)`
| `(2x)^2 xx (x + 3)/(2x)` | `> (2x)^2` |
| `2x (x + 3)` | `> 4x^2` |
| `2x^2 + 6x` | `> 4x^2` |
| `2x^2\ – 6x` | `< 0` |
| `2x (x\ – 3)` | `< 0` |
`:.\ {x: 0 < x < 3}`
`text(Solution 2)`
`text(If)\ \ x > 0,`
| `x + 3` | `> 2x` |
| `x` | `< 3` |
`:.\ 0 < x < 3`
`text(If)\ \ x < 0,`
| `x + 3` | `< 2x` |
| `x` | `> 3\ \ \ =>\ text(No solution)` |
`:.\ {x: 0 < x < 3}`
Which inequality has the same solution as `|\ x + 2\ | + |\ x- 3\ | = 5`?
`C`
`text(In)\ A\ text(and)\ B, \ x ≠ 3\ text(but when)\ x=3,`
`|\ 3 + 2\ | + |\ 3 – 3\ | = 5\ \ text(is correct.)`
`:.\ text(Not)\ \ A\ \ text(or)\ \ B.`
`text(Consider)\ D`
`x -> oo\ text(satisfies)\ |\ 2x – 1\ | >= 5,\ \ text(but)`
`text(obviously not)\ |\ x + 2\ | + |\ x – 3\ | = 5.`
`text(Consider)\ C`
| `x^2 – x – 6` | `<= 0` |
| `(x – 3)(x + 2)` | `<= 0` |
`text(True when)\ \ \ -2 <= x <= 3.`
`text(In this range,)`
`(x + 2) >= 0\ \ text(and)\ \ (x – 3)<= 0`
`:.\ text(We can write)`
| `|\ x + 2\ | + |\ x – 3\ |` | `= (x + 2)\ – (x – 3)` |
| `= x + 2 – x + 3` | |
| `= 5` |
`:. C\ text(has the same solution)`
`=> C\ text(is correct.)`
Solve `3/(x+2) < 4`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x < -2\ \ text(or)\ \ x > -5/4`
`text(Solution 1)`
`3/(x + 2) < 4`
`text(Multiply b.s. by)\ \ (x + 2)^2`
| `3(x + 2)` | `< 4(x + 2)^2` |
| `3x + 6` | `< 4 (x^2 + 4x + 4)` |
| `3x + 6` | `< 4x^2 + 16x + 16` |
| `4x^2 + 13x + 10` | `> 0` |
| `(4x + 5)(x + 2)` | `> 0` |
`text(LHS)\ = 0\ \ text(when)\ \ x = -5/4\ \ text(or)\ \ -2`
`text(From graph)`
`x < -2\ \ text(or)\ \ x > -5/4`
`text(Alternate Solution)`
`text(If)\ \ x + 2 > 0\ \ \ \ text{(i.e.}\ \ x > –2 text{)}`
| `3` | `< 4(x + 2)` |
| `3` | `< 4x + 8` |
| `4x` | `> -5` |
| `x` | `> -5/4` |
`text(If)\ \ x + 2 < 0\ \ \ \ text{(i.e.}\ x < –2 text{)}`
| `3` | `> 4 (x + 2)` |
| `3` | `> 4x + 8` |
| `4x` | `< -5` |
| `x` | `< -5/4` |
| `:. x` | `< –2\ \ \ \ text{(satisfies both)}` |
`:.\ x < –2\ \ text(or)\ \ x > –5/4`
Solve `x/(x - 3) < 2`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x<3\ \ text(or)\ \ x>6`
`text(Solution 1)`
`x/(x – 3) < 2`
`text(When)\ \ x – 3 > 0,\ \ \ (text(i.e.)\ \ x > 3)`
| `x` | `< 2 ( x – 3)` |
| `x` | `< 2x\ – 6` |
| `=>x` | `>6\ \ \ text{(satisfies both)}` |
`text(When)\ \ x\ – 3 < 0,\ \ \ (text(i.e.)\ \ x<3)`
| `x` | `>2 (x – 3)` |
| `x` | `> 2x – 6` |
| `x` | `<6` |
| `=> x` | `<3\ \ \ text{(satisfies both)}` |
`:.\ text(Equation is correct for)\ x<3\ text(or)\ x>6`
`text(Solution 2)`
`x/((x\ – 3)) < 2`
`text(Multiply b.s. by)\ \ (x-3)^2`
| `x(x – 3)` | `< 2(x^2 – 6x + 9)` |
| `x^2 – 3x` | `< 2x^2 – 12x + 18` |
| `x^2 – 9x + 18` | `>0` |
| `(x – 3)(x – 6)` | `>0` |
`:.\ text(Equation correct for)\ x<3\ \ text(or)\ \ x>6`
Solve `(4-x)/x <1`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x<0\ \ text(or)\ \ x>2`
`text(Solution 1)`
`(4-x)/x < 1`
| `text(If)\ x<0,\ \ \ \ \ 4-x` | `> x` |
| `2x` | `< 4` |
| `x` | `<2` |
`=> x<0\ \ \ text{(satisfies both)}`
| `text(If)\ x>0,\ \ \ \ \ 4-x` | `<x` |
| `2x` | `>4` |
| `x` | `>2` |
`=> x>2\ \ \ text{(satisfies both)}`
`:.\ x < 0\ \ text(or)\ \ x > 2`
`text(Solution 2)`
`text(Multiply both sides by)\ \ x^2`
| `x(4-x)` | `< x^2` |
| `4x-x^2` | `< x^2` |
| `2x^2-4x` | `>0` |
| `2x(x-2)` | `>0` |
`text(From graph)`
`x<0\ \ text(or)\ \ x >2`
Shade the region in the plane defined by `y >= 0` and `y <= 4-x^2`. (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
The diagram shows the graphs `y = |\ x\ |\ - 2` and `y = 4- x^2`.
Write down inequalities that together describe the shaded region. (2 marks)
`text(Inequalities are)`
`y <= 4\ – x^2`
`y >= |\ x\ |\ – 2`
`text(Inequalities are)`
`y <= 4 – x^2`
`y >= |\ x\ |\ – 2`
Solve `|\ 3x -1\ | < 2` (2 marks)
` -1/3 < x < 1 `
`|\ 3x -1\ | < 2`
| `3x -1` | `<2` | `\ \ \ \ \-(3x -1)` | `< 2` |
| `3x` | `<3` | `-3x + 1` | `< 2` |
| `x` | `< 1` | `3x` | `> -1` |
| `x` | `> -1/3` |
`:. -1/3 < x < 1`
The diagram shows the region enclosed by `y = x- 2` and `y^2 = 4-x`.
Which of the following pairs of inequalities describes the shaded region in the diagram?
`A`
`text(Using information from diagram)`
`(3,0)\ text(is in the shaded region)`
`text{Substituting (3,0) into}\ \ \ y^2<=4-x,\ \ \ 0 <= 4-3 => text(true)`
`:.\ text(Cannot be)\ C\ text(or)\ D`
`text(Similarly)`
`(3,0)\ text(must satisfy other inequality)`
`text(i.e.)\ \ y <= x-2\ \ text(becomes)\ \ 0<= 3-2 =>\ text(true)`
`=> A`
Sketch the region defined by `(x-2)^2 + ( y-3)^2 >= 4`. (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
`text(The region is the exterior of a circle,)`
`text(centre)\ text{(2,3)}\ text(and radius 2.)`