Rationalise the denominator of the surd fraction `(sqrt(12))/(sqrt(6)-2)`. (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Rationalise the denominator of the surd fraction `(sqrt(12))/(sqrt(6)-2)`. (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
`3sqrt(2)+2sqrt(3)`
`(sqrt(12))/(sqrt(6)-2)` | `=(2sqrt(3))/(sqrt(6)-2) xx (sqrt(6)+2)/(sqrt(6)+2)` | |
`=(2sqrt(3)(sqrt(6)+2))/((sqrt(6))^2-2^2)` | ||
`=(2sqrt(18)+4sqrt(3))/(2)` | ||
`=(6sqrt(2)+4sqrt(3))/(2)` | ||
`=3sqrt(2)+2sqrt(3)` |
Rationalise the denominator of the surd fraction `(8-2sqrt(6))/(3sqrt(2)+2sqrt(3))`. (3 marks)
`6sqrt(2)-14/3sqrt(3)`
`(8-2sqrt(6))/(3sqrt(2)+2sqrt(3))`
`=(8-2sqrt(6))/(3sqrt(2)+2sqrt(3))xx(3sqrt(2)-2sqrt(3))/(3sqrt(2)-2sqrt(3))`
`=((8-2sqrt(6))(3sqrt(2)-2sqrt(3)))/((3sqrt(2))^2-(2sqrt(3))^2)`
`=(24sqrt(2)-16sqrt(3)-6sqrt(12)+4sqrt(18))/(18-12)`
`=(24sqrt(2)-16sqrt(3)-12sqrt(3)+12sqrt(2))/6`
`=(36sqrt(2)-28sqrt(3))/6`
`=6sqrt(2)-14/3sqrt(3)`
Expand and simplify `(4sqrt(3)+sqrt(2))(4sqrt(8)-sqrt(12))`. (2 marks)
`30sqrt(6)-8`
`(4sqrt(3)+sqrt(2))(4sqrt(8)-sqrt(12))`
`=16sqrt(24)-4sqrt(36)+4sqrt(16)-sqrt(24)`
`=15sqrt(4xx6)-24+16`
`=30sqrt(6)-8`
Expand and simplify `(sqrt(20)+2sqrt(10))(3sqrt(6)-sqrt(3))`. (2 marks)
`4sqrt(30)+10sqrt(15)`
`(sqrt(20)+2sqrt(10))(3sqrt(6)-sqrt(3))`
`=3sqrt(120)-sqrt(60)+6sqrt(60)-2sqrt(30)`
`=3sqrt(4xx30)+5sqrt(4xx15)-2sqrt(30)`
`=6sqrt(30)+10sqrt(15)-2sqrt(30)`
`=4sqrt(30)+10sqrt(15)`
Simplify `(p/q)^3 ÷ (pq^(-2))`. (2 marks)
`(p^2)/q`
`(p/q)^3 ÷ (pq^(-2))` | `= (p^3)/(q^3) ÷ p/(q^2)` |
`= (p^3)/(q^3) xx (q^2)/p` | |
`= (p^2)/q` |
Find the reciprocal of `1/a + 1/b -c/(ab)`. (3 marks)
`(ab)/(a+b-c)`
`1/a + 1/b -c/(ab)` | `=b/(ab)+a/(ab)-c/(ab)` |
`=(b+a-c)/(ab)` |
`text(Reciprocal of)\ \ x = x^(-1)`
`:.\ text(Reciprocal of)\ \ (b+a-c)/(ab)=>((b+a-c)/(ab))^(-1)=(ab)/(a+b-c)`
Simplify `(a(b^2)^3)/(a^2b)`. (2 marks)
`b^5/a`
`(a(b^2)^3)/(a^2b)` | `= (ab^6)/(a^2b)` |
`= b^5/a` |
Find `a` and `b` such that `a,b` are real numbers and
`(6sqrt3-sqrt5)/(2sqrt5)= a + b sqrt15`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`a= -1/2, \ b=3/5`
`(6sqrt3-sqrt5)/(2sqrt5)` | `=(6sqrt3-sqrt5)/(2sqrt5) xx (sqrt5)/(sqrt5)` | |
`=(sqrt5(6sqrt3-sqrt5))/(2 xx5)` | ||
`=(6sqrt15-5)/10` | ||
`=-1/2 + 3/5 sqrt15` |
`:. a= -1/2, \ b=3/5`
Show working to find `a` and `b` such that `a,b` are real numbers and
`(sqrt32-6)/(3sqrt2) = a + bsqrt2`. (2 marks)
`:. a = 4/3, \ b = -1`
`(sqrt32-6)/(3sqrt2) xx (sqrt2)/(sqrt2)` | `= (sqrt2(4sqrt2-6))/6` |
`= (8-6sqrt2)/6` | |
`= 4/3-sqrt2` |
`:. a = 4/3, \ b = -1`
Show working to simplify `a` and `b` such that `a, b` are real numbers and
`(8-sqrt27)/(2sqrt3) = a + bsqrt3`. (2 marks)
`:. a =-3/2, \ b = 4/3`
`(8-sqrt27)/(2sqrt3) xx (sqrt3)/(sqrt3)` | `=(sqrt3(8-3sqrt3))/(2xx3)` |
`= (8sqrt3-9)/6` | |
`= -3/2 + 4/3sqrt3` |
`:. a = -3/2, \ b = 4/3`
Rationalise the denominator of `1/(4sqrt 3)`. (2 marks)
`sqrt 3/12`
`1/(4sqrt 3) xx (sqrt 3)/(sqrt 3)` | `= (sqrt 3)/(4xx3)` | |
`= sqrt 3/12` |
Simplify `((4p^2)/8)^(-3)` and express as a fraction involving non-negative indices only. (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
`8/(p^6)`
`((4p^2)/8)^(-3)` | `= ((p^2)/2)^(-3)` |
`=p^(2xx -3)/(2^(-3))` | |
`= (p^(-6))/(2^(-3))= (2^(3))/(p^(6))` | |
`= 8/(p^6)` |
Simplify `((3y^3)/2)^(-2)` and express as a fraction involving non-negative indices only. (3 marks)
--- 4 WORK AREA LINES (style=lined) ---
`4/(9y^6)`
`((3y^3)/2)^(-2)` | `=(3^(-2)xxy^((3xx-2)))/(2^(-2))` |
`= (2^(2)xxy^(-6))/(3^(2))` | |
`= 4/(9y^6)` |
Express `4a^(-5) -: 12a^4` as a fraction involving non-negative indices only. (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
`1/(3a^9)`
`4a^(-5) -: 12a^4` | `=(4a^(-5))/(12a^4)` |
`= a^((-5-4))/3` | |
`= (a^(-9))/3` | |
`=1/(3a^9)` |
Express `(24p^(-3)q^4)/(8pq^(2))` as a fraction involving non-negative indices only. (1 mark)
`(3q^2)/p^4`
`(24p^(-3)q^4)/(8pq^(2))` | `=3p^((-3-1))q^((4-2))` |
`= 3p^(-4)q^2` | |
`= (3q^2)/p^4` |
Simplify the expression `(36t^4)/(9t^(-2))`. (1 mark)
`4t^6`
`(36t^4)/(9t^(-2))` | `= 4t^(4-(-2))` |
`= 4t^6` |
Simplify the expression `(16x^5)/(2x^(-3))`. (1 mark)
`8x^8`
`(16x^5)/(2x^(-3))` | `= 8x^(5-(-3))` |
`= 8x^8` |
Simplify the expression `(12x)^0/4 xx (5x)/3`. (1 mark)
`(5x)/12`
`(12x)^0/4 xx (5x)/3` | `= 1/4 xx (5x)/3` |
`= (5x)/12` |
Simplify the expression `(20m^0)/n xx n^2/(5m)`. (1 mark)
`(4n)/m`
`(20m^0)/n xx n^2/(5m)` | `= 20/n xx n^2/(5m)` |
`= (4n)/m` |
Express `4^(-3)` as a fraction. (1 mark)
`1/64`
`4^(-3)` | `= 1/4^3` |
`= 1/64` |
Simplify the expression `36t^7 -: 27t^3`. (2 marks)
`(4t^4)/3`
`36t^7 -: 27t^3` | `= (9 xx 4 xxt^7)/(9xx3xxt^3)` |
`= (4t^4)/3` |
Simplify the expression `24a^8 -: 3a^2`. (2 marks)
`8a^6`
`24a^8 -: 3a^2` | `= (8xx3xxa^8)/(3 xx a^2)` |
`= 8a^6` |
Simplify the expression `(5p^3)^2`. (2 marks)
`25p^6`
`(5p^3)^2` | `= 5^2 xx (p^3)^2` |
`= 25p^(3xx2)` | |
`=25p^6` |
Simplify the expression `(2x^3)^4`. (2 marks)
`16x^12`
`(2x^3)^4` | `= 2^4 xx (x^3)^4` |
`= 16x^(3xx4)` | |
`=16x^12` |
Find `x` given `100^(x-2) = 1000^x`. (2 marks)
`-4`
`100^(x-2)` | `= 1000^x` |
`(10^2)^(x-2)` | `= (10^3)^x` |
`10^(2x-4)` | `= (10)^(3x)` |
`2x-4` | `=3x` |
`:. x` | `= -4` |
Solve the equation `2^(3x-3) = 8^(2-x)` for `x`. (2 marks)
`3/2`
`2^(3x-3)` | `= 2^(3(2-x))` |
`3x-3` | `= 6-3x` |
`6x` | `= 9` |
`:. x` | `= 3/2` |
Solve the equation `3^(-4x) = 9^(6-x)` for `x.` (2 marks)
`-6`
`3^(-4x)` | `= (3^2)^(6-x)` |
`3^(-4x)` | `=3^(12-2x)` |
` -4x` | `= 12-2x` |
`2x` | `=-12` |
`:. x` | `=-6` |
Select the expression that is equivalent to `(4^(-3) ÷ 4^6)^3`
`A`
`(4^(-3) -: 4^6)^3` | `= (4^(-3-6))^3` |
`= (4^(-9))^3` | |
`= 4^(-9 xx 3)` | |
`= 4^(-27)` |
`=>A`
Which of the following has the same value as `7^(-11)?`
`D`
`7^(-11)=1/(7^11)`
`=>D`
Which expression is equal to `6^3 xx 36^2`?
`D`
`6^3 xx 36^2` | `= (6xx6xx6) xx (6xx6)^2` |
`= (6xx6xx6) xx (6xx6) xx (6 xx6)` | |
`=6 xx 6 xx 6 xx 6 xx 6 xx 6 xx 6` |
`=>D`
`7 xx 2^3 =`
`C`
`7 xx 2^3` | `= 7 xx 2 xx 2 xx 2` |
`= 56` |
`=>C`
`30^2` is equal to which of the following?
`B`
`30^2 = 900`
`3^2 xx 2 xx 5 xx 2 xx 5`
`= 3^2 xx 10 xx 10`
`= 900`
`=>B`
Which of the following is equal to 32?
`=>A`
`2^3 xx 2^2` | `= 8 xx 4` |
`= 32` |
`=>A`
What is the value of `p` so that `(a^2a^(-3))/sqrt a = a^p`?
`B`
`(a^2 a^(-3))/a^(1/2)` | `= a^(-1) xx a^(-1/2)` |
`= a^(-3/2)` |
`=> B`
Simplify `(8x^4y)/(24x^3y^5)`. (2 marks)
`x/(3y^4)`
`(8x^4y)/(24x^3y^5)` | `=(x^((4-3))y^((1-5)))/3` | |
`=(xy^(-4))/3` | ||
`=x/(3y^4)` |
Which of the following is `3x^0 + 5x` in its simplest form?
`D`
`3x^0 + 5x` | `= 3 xx 1 + 5x` |
`= 3 + 5x` |
`=> D`
Simplify `(ab^2)/w xx (4w)/(3b).` (2 marks)
`(4ab)/3`
`(ab^2)/w xx (4w)/(3b)` | `=(4ab^2w)/(3bw)` | |
`=(4ab)/3` |
Find integers `a` and `b` by showing working to expand and simplify
`(3-sqrt2)^2 = a-b sqrt2`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`a = 11,\ b = 6`
`(3-sqrt2)^2` | `= 9-6 sqrt2 + (sqrt2)^2` |
`= 9-6 sqrt2 + 2` | |
`= 11-6 sqrt2` | |
`:.\ a = 11, \ \ b = 6` |
Simplify `2m^2 × 3m p^2`
`D`
`2m^2 × 3m p^2` | `= 6m^((2+1))p^2` | |
`=6m^3p^2` |
`=> D`
Which expression is equivalent to `12k^3 ÷ 4k`?
`A`
`12k^3 -: 4k` | `=(12k^3)/(4k)` | |
`=3k^2` |
`=> A`
Expand and simplify `(sqrt3-1)(2 sqrt3 + 5)`. (2 marks)
`1 + 3 sqrt 3`
`(sqrt 3-1)(2 sqrt 3 + 5)`
`= 2 xx 3 + 5 sqrt 3-2 sqrt 3-5`
`= 1 + 3 sqrt 3`
Simplify `6w^4 xx 1/3 w^2`.
`A`
`6w^4 xx 1/3w^2` | `= (6w^4w^2)/3` | |
`= 2w^6` |
`=> A`
Fully simplify `(4x^2)/(3y) -: (xy)/5`. (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
`(20x)/(3y^2)`
`(4x^2)/(3y) -: (xy)/5` | `= (4x^2)/(3y) xx 5/(xy)` |
`= (20x^2)/(3xy^2)` | |
`= (20x)/(3y^2)` |
Simplify fully `(18ab)/(3a^2) xx c/b`. (2 marks)
`(6c)/a`
`(18ab)/(3a^2) xx c/b` | `= (18abc)/(3a^2b)` |
`=(6c)/a` |
Which of the following expresses `(6x^2y)/3-:(2y)/5` in its simplest form?
`A`
`(6x^2y)/3-:(2y)/5` | `=(6x^2y)/3xx5/(2y)` |
`=(30x^2y)/(6y)` | |
`=5x^2` |
`=>A`
Which of the following is `(12T^2)/(3Txx2W)` in its simplest form?
`A`
`(12T^2)/(3Txx2W)=(12T^2)/(6TW)=(2T)/W`
`=>\ A`
Solve `2^(2x+1)=32`. (2 marks)
`x=2`
`2^(2x+1)` | `=32` |
`2^(2x+1)` | `=2^5` |
`2x+1` | `=5` |
`:. x` | `=2` |