Solve for `a` given `8a^3+21=0.`
Round your answer to two decimal places. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Solve for `a` given `8a^3+21=0.`
Round your answer to two decimal places. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`a=-1.38`
| `8a^3+21` | `=0` |
| `8a^3` | `=-21` |
| `a^3` | `=-21/8` |
| `a` | `=-root3(21/8)` |
| `=-1.379…` | |
| `= -1.38` |
Solve for `p` given `64p^3+125=0.` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`p=-5/4`
| `64p^3+125` | `=0` |
| `64p^3` | `=-125` |
| `p^3` | `=-125/64` |
| `p` | `=-root3(125/64)` |
| `=-(root3(125))/(root3(64))` | |
| `= -5/4` |
Solve for `x` given `8x^3=27`. (2 marks)
`x=3/2`
| `8x^3` | `=27` |
| `x^3` | `=27/8` |
| `x` | `=root3(27/8)` |
| `=(root3(27))/(root3(8))` | |
| `= 3/2` |
By completing the square, solve for `b` given
`b^2-10b-125=0.` (3 marks)
`5+-5sqrt(6)`
| `b^2-10b-125` | `=0` |
| `b^2-10b+25-150` | `=0` |
| `(b-5)^2` | `=150` |
| `b-5` | `= +-sqrt(150)` |
| `b` | `=5+-sqrt(25xx6)` |
| `b` | `=5+-5sqrt(6)` |
By completing the square, solve for `x` given
`x^2-12x=-4.` (3 marks)
`6+-4sqrt(2)`
| `x^2-12x` | `=-4` |
| `x^2-12x+36` | `=-4+36` |
| `(x-6)^2` | `=32` |
| `x-6` | `= +-sqrt(32)` |
| `x` | `=6+-4sqrt(2)` |
By completing the square, solve for `y` given
`y^2-14y+37=0.` (3 marks)
`7+-2sqrt(3)`
| `y^2-14y+37` | `=0` |
| `y^2-14y+49-12` | `=0` |
| `(y-7)^2` | `=12` |
| `y-7` | `= +-sqrt(12)` |
| `y` | `=7+-2sqrt(3)` |
By completing the square, solve for `x` given
`x^2+4x-1 = 0.` (3 marks)
`-2+-sqrt(5)`
| `x^2+4x-1` | `=0` |
| `x^2+4x+4-5` | `=0` |
| `(x+2)^2` | `=5` |
| `x+2` | `= +-sqrt(5)` |
| `x` | `=-2+-sqrt(5)` |
Using the quadratic formula, find `p` given
`p^2+2p-4 = 0.` (3 marks)
`-1 +- sqrt(5)`
`p^2+2p-4 = 0`
`text(Using)\ x = (-b +- sqrt( b^2-4ac) )/(2a)`
| `p` | `= (-2 +- sqrt{(2)^2-4 xx 1 xx(-4) })/ (2 xx 1)` |
| `= (-2 +- sqrt(20) )/2` | |
| `=(-2 +- 2sqrt(5) )/2` | |
| `= -1 +- sqrt(5)` |
Using the quadratic formula, find `a` given
`5a^2+7a-1 = 0.` (3 marks)
`(-7 +- sqrt(69) )/10`
`5a^2+7a-1 = 0`
`text(Using)\ a = (-b +- sqrt( b^2-4ac) )/(2a)`
| `a` | `= (-7 +- sqrt{(7)^2-4 xx 5 xx(-1) })/ (2 xx 5)` |
| `= (-7 +- sqrt(49+20) )/10` | |
| `= (-7 +- sqrt(69) )/10` |
Using the quadratic formula, solve
`3x^2-4x-2 = 0`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`(2 +- sqrt(10) )/3`
`3x^2-4x-2 = 0`
`text(Using)\ x = (-b +- sqrt( b^2-4ac) )/(2a)`
| `x` | `= (4 +- sqrt{(-4)^2-4 xx 3 xx(-2) })/ (2 xx 3)` |
| `= (4 +- sqrt(16+24) )/6` | |
| `= (4 +- sqrt(40) )/6` | |
| `= (4 +- 2sqrt(10) )/6` | |
| `= (2 +- sqrt(10) )/3` |
Solve the equation `21-4b^2=5b` for `b.` (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`b=7/4 \ text{or}\ -3`
| `21-4b^2` | `=5b` |
| `4b^2+5b-21` | `=0` |
| `(4b-7)(b+3)` | `=0` |
| `4b-7` | `=0` | `text{or}\ \ \ \ b=-3` |
| `b` | `=7/4` |
Solve the equation `12a^2+8a-15=0` for `a.` (2 marks)
`x=5/6 \ text{or}\ -3/2`
| `12a^2+8a-15` | `=0` |
| `(6a-5)(2a+3)` | `=0` |
| `6a-5` | `=0` | `text{or}\ \ \ \ a=-3/2` |
| `a` | `=5/6` |
Solve the equation `6p^2-p-7=0` for `p`. (2 marks)
`x=7/6 \ text{or}\ -1`
| `6p^2-p-7` | `=0` |
| `(6p-7)(p+1)` | `=0` |
| `6p-7` | `=0` | `text{or}\ \ \ \ p=-1` |
| `p` | `=7/6` |
Solve the equation `6x^2-3x-9=0` for `x`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`x=3/2 \ text{or}\ -1`
| `6x^2-3x-9` | `=0` |
| `3(2x^2-x-3)` | `=0` |
| `3(2x-3)(x+1)` | `=0` |
| `2x-3` | `=0` | `text{or}\ \ \ \ x=-1` |
| `x` | `=3/2` |
Solve the equation `3q^2-10q-8=0` for `q.` (2 marks)
`q=-2/3 \ text{or}\ 4`
| `3q^2-10q-8` | `=0` |
| `(3q+2)(q-4)` | `=0` |
| `3q+2` | `=0` | `text{or}\ \ q=4` |
| `q` | `=-2/3` |
Solve the equation `p^2-12p=64` for `p`. (2 marks)
`p=16 \ text{or}\ -4`
| `p^2-12p` | `=64` |
| `p^2-12p-64` | `=0` |
| `(p-16)(p+4)` | `=0` |
`:. p=16 \ text{or}\ -4`
Solve the equation `14x=32-x^2` for `x`. (2 marks)
`x=2 \ text{or}\ -16`
| `14x` | `=32-x^2` |
| `x^2+14x-32` | `=0` |
| `(x-2)(x+16)` | `=0` |
`:. x=2 \ text{or}\ -16`
Solve the equation `c^2-24=5c` for `c`. (2 marks)
`c=8 \ text{or}\ -3`
| `c^2-24` | `=5c` |
| `c^2-5c-24` | `=0` |
| `(c-8)(c+3)` | `=0` |
`:. c=8 \ text{or}\ -3`
Solve the equation `y^2-2y-3=0` for `y`. (2 marks)
`y=3 \ text{or}\ -1`
| `y^2-2y-3` | `=0` |
| `(y-3)(y+1)` | `=0` |
`:. y=3 \ text{or}\ -1`
Solve the equation `t^2-8t+12=0` for `t`. (2 marks)
`:. t=6 \ text{or}\ 2`
| `t^2-8t+12` | `=0` |
| `(t-6)(t-2)` | `=0` |
`:. t=6 \ text{or}\ 2`
The volume of a sphere is given by `V = 4/3 pi r^3` where `r` is the radius of the sphere.
If the volume of a sphere is `220\ text(cm)^3`, find the radius, to 1 decimal place. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`3.7\ \ text{cm (to 1 d.p.)}`
| `V` | `= 4/3 pi r^3` |
| `3V` | `= 4 pi r^3` |
| `r^3` | `= (3V)/(4 pi)` |
`text(When)\ \ V = 220`
| `r^3` | `= (3 xx 220)/(4 pi)` |
| `= 52.521…` | |
| `:. r` | `=root3 (52.521…)` |
| `= 3.744…\ \ \ text{(by calc)}` | |
| `= 3.7\ \ text{cm (to 1 d.p.)}` |
Make `r` the subject of the equation `V = 4/3 pir^3`. (3 marks)
`r = root(3)((3V)/(4pi))`
| `V` | `= 4/3 pir^3` |
| `3V` | `=4pir^3` |
| `(3V)/4` | `= pir^3` |
| `r^3` | `= (3V)/(4pi)` |
| `r` | `= root(3)((3V)/(4pi))` |
Which expression is equal to `3x^2-x-2`?
`D`
`3x^2-x-2= (3x + 2) (x-1)`
`=> D`
Make `L` the subject of the equation `T = 2piL^2`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`± sqrt(T/(2pi))`
| `T` | `= 2piL^2` |
| `L^2` | `= T/(2pi)` |
| `:.L` | `= ±sqrt(T/(2pi))` |
If `d = 6t^2`, what is a possible value of `t` when `d = 2400`?
`B`
| `d` | `= 6t^2` |
| `t^2` | `= d/6` |
| `t` | `= +- sqrt(d/6)` |
`text(When)\ \ d = 2400:`
| `t` | `= +- sqrt(2400/6)` |
| `= +- 20` |
`=> B`
Solve `x^2 = 4x`. (2 marks)
`x = 0\ text(or)\ 4`
| `x^2` | `= 4x` |
| `x^2-4x` | `= 0` |
| `x(x-4)` | `= 0` |
`:.\ x = 0\ text(or)\ 4`
What are the solutions of `2x^2-5x-1 = 0`?
`D`
`2x^2-5x-1 = 0`
`text(Using)\ x = (-b +- sqrt( b^2-4ac) )/(2a)`
| `x` | `= (5 +- sqrt{\ \ (-5)^2-4 xx 2 xx(-1) })/ (2 xx 2)` |
| `= (5 +- sqrt(25 + 8) )/4` | |
| `= (5 +- sqrt(33) )/4` |
`=> D`
Which of the following correctly expresses `a` as the subject of `s= ut+1/2at^2 `?
`A`
| `s` | `=ut+1/2at^2` |
| `1/2at^2` | `=s-ut` |
| `at^2` | `=2(s-ut)` |
| `a` | `=(2(s-ut))/t^2` |
`=>A`