SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C4 2011 HSC 4d v1

  1. Differentiate  `y=sqrt(16 -x^2)`  with respect to  `x`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Hence, or otherwise, find  `int (8x)/sqrt(16 -x^2)\ dx`.    (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `- x/sqrt(16\ -x^2)`
  2. `-8 sqrt(16\ -x^2) + C`
Show Worked Solution
IMPORTANT: Some students might find calculations easier by rewriting the equation as `y=(16-x^2)^(1/2)`.
a.    `y` `= sqrt(16 -x^2)`
    `= (16 -x^2)^(1/2)`

 

`dy/dx` `=1/2 xx (16 -x^2)^(-1/2) xx d/dx (16 -x^2)`
  `= 1/2 xx (16 -x^2)^(-1/2) xx -2x`
  `= – x/sqrt(16 -x^2)`

 

b.    `int (8x)/sqrt(16 – x^2)\ dx` `= -8 int (-x)/sqrt(16 -x^2)\ dx`
    `= -8 (sqrt(16 -x^2)) + C`
    `= -8 sqrt(16 -x^2) + C`

Filed Under: Standard Integration (Adv-X) Tagged With: Band 4, Band 5, eo-derivative (HSC), smc-1202-10-Indefinite Integrals, smc-1202-30-Diff then Integrate

Calculus, 2ADV C4 2010 HSC 2di v1

Find  `int sqrt(4x+3) \ dx .`   (2 marks)

Show Answers Only

` ((4x+3)^(3/2))/6  + C`

 

Show Worked Solution
` int sqrt( 4x+3 ) \ dx` `= 1/(3/2) xx 1/4 xx (4x+3)^(3/2) +C`
  `=  ((4x+3)^(3/2))/6 + C`

Filed Under: Standard Integration (Adv-X) Tagged With: Band 4, eo-derivative (HSC), smc-1202-10-Indefinite Integrals

Calculus, 2ADV C4 2022 HSC 6 MC v1

What is `int(3)/((5x-2)^(2))\ dx` ?

  1. `(-3)/(5x-2)+C`
  2. `(-3)/(5(5x-2))+C`
  3. `(3)/(5) text{ln}(5x-2)+C`
  4. `(3)/(5x-2)+C`
Show Answers Only

`B`

Show Worked Solution

 

`int 3(5x-2)^(-2)` `=(3(5x-2)^(-1))/((-1)(5))+C`  
  `=(-3)/(5(5x-2))+C`  

 
`=>B`

Filed Under: Standard Integration (Adv-X) Tagged With: Band 4, eo-derivative (HSC), smc-1202-10-Indefinite Integrals

Calculus, 2ADV C4 2024 HSC 5 MC v1

What is \( {\displaystyle \int x(3 x^2+1)^4 d x} \) ?

  1. \( \dfrac{1}{30}(3x^2+1)^5+C \)
  2. \( \dfrac{1}{5}(3x^2+1)^5+C \)
  3. \( \dfrac{5}{6}(3x^2+1)^5+C \)
  4. \( \dfrac{6}{5}(3x^2+1)^5+C \)
Show Answers Only

\( A \)

Show Worked Solution
\[ \int x(3x^2+1)^4 dx\] \(=\dfrac{1}{5} \cdot \dfrac{1}{6x}x(3x^2+1)^5+C\)  
  \(=\dfrac{1}{30}(3x^2+1)^5+C\)  

 
\( \Rightarrow A \)

NOTE: Integrating by the reverse chain rule only works if some form of the derivative is already present outside of the brackets.

Filed Under: Standard Integration (Adv-X) Tagged With: Band 3, eo-derivative (HSC), smc-1202-10-Indefinite Integrals

Calculus, 2ADV C1 2014 HSC 13c v1

The displacement of a particle moving along the  `x`-axis is given by

 `x =2t -3/sqrt(t+1)`,

where  `x`  is the displacement from the origin in metres,  `t`  is the time in seconds, and  `t >= 0`.

  1. Show that the acceleration of the particle is always negative.    (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. What value does the velocity approach as  `t`  increases indefinitely?    (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `2`
Show Worked Solution
a.    `x` `=2t -3/sqrt(t+1)`
    `=2t -3(t+1)^(-1/2)`

 

`dot x` `= 2\ -3(-1/2) (t+1)^(-3/2)`
  `= 2 + 3/(2(t+1)^(3/2))`

 

`ddot x` `= -(9/4)(t+1)^(-5/2)`
  `= – 9/(4sqrt((t+1)^5))`

 
`text(S)text(ince)\ \ t >= 0,`

`=> 1/sqrt((t+1)^5) > 0`

`=> – 9/(4sqrt((t+1)^5)) < 0`
 

`:.\ text(Acceleration is always negative.)`

 

b.    `text(Velocity)\ (dot x) = 2 + 3/(2(t+1)^(3/2))`

 
`text(As)\ t -> oo,\ 3/(2(t+1)^(3/2)) -> 0`

`:.\ text(As)\ t -> oo,\ dot x -> 2`

Filed Under: Rates of Change (Adv-X) Tagged With: Band 4, eo-derivative (HSC), smc-1083-30-Quotient Function

Calculus, 2ADV C1 2018 HSC 12d v1

The displacement of a particle moving along the `x`-axis is given by

`x = 1/4t^4 -t^3 -1/2t^2 +3t,`

where `x` is the displacement from the origin in metres and `t` is the time in seconds, for `t >= 0`.

  1. What is the initial velocity of the particle?  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. At which times is the particle stationary?  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  3. Find the position of the particle when the acceleration is `4/3`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `3\ text(ms)^(-1)`
  2. `t = 1 or 3\ text(seconds)`
  3. `-329/324\ text(m)`
Show Worked Solution

i.    `x = 1/4t^4 -t^3 -1/2t^2 +3t`

`v = (dx)/(dt) = t^3-3t^2-t+3`
 

`text(Find)\ \ v\ \ text(when)\ \ t = 0:`

`v` `= 0 -3(0) -0+ 3`
  `= 3\ text(ms)^(-1)`

 

ii.  `text(Particle is stationary when)\ \ v = 0`

`t^3-3t^2-t+3` `=0`  
`t^2(t-3)-1(t-3)` `=0`  
`(t-3)(t^2-1)` `=0`  
`(t-3)(t-1)(t+1)` `=0`  

 

`t = 1 or 3\ text(seconds), t >= 0`
 

iii.  `a = (dv)/(dt) = 3t^2-6t-1`
 

`text(Find)\ \ t\ \ text(when)\ \ a = 4/3`

`3t^2-6t-1` `= 4/3`
`3t^2-6t-7/3` `= 0`
`9t^2-18t-7` `=0`
`(3t-7)(3t+1)` `=0`
`t` `=7/3`, `t >= 0`
`x(7/3)` `= 1/4(7/3)^4 -(7/3)^3 -1/2(7/3)^2 +3(7/3)`
  `= -329/324\ text(m)`

Filed Under: Rates of Change (Adv-X) Tagged With: Band 3, eo-derivative (HSC), smc-1083-20-Polynomial Function

Calculus, 2ADV C1 2019 HSC 14d v1

The equation of the tangent to the curve  `y = ae^(2x)+bx`  at the point where  `x = 0`  is  `y = 3x +2`.

Find the values of  `a`  and  `b`.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`b = -1,\ \ a = 2`

Show Worked Solution
`y ` `= ae^(2x)+bx`
`(dy)/(dx)` `= 2ae^(2x)+b`

 
`text(When)\ \ x = 0,\ \ (dy)/(dx) = 3`

`2a + b` `= 3\ …\ (1)`

 
`text(The point)\ (0, 2)\ text(lies on)\ y:`

`a(1) +b(0)` `=2`
`a` `= 2\ …\ (2)`

  

`text(Substitute into)\ (1)`

`2(2)+b` `= 3`
`b` `= -1`

Filed Under: Tangents (Adv-X) Tagged With: Band 5, eo-derivative (HSC), smc-973-20-Find Curve Equation

Calculus, 2ADV C1 2023 HSC 14 v1

Find the equation of the tangent to the curve  `y=x(3x+2)^2`  at the point `(1,25)`.   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`y=55x-30`

Show Worked Solution
`y` `=x(3x+2)^2`  
`dy/dx` `=6x(3x+2) + (3x+2)^2`  
  `=(3x+2)(9x+2)`  

 
`text{At}\ x=1\ \ =>\ \ dy/dx=(3(1)+2)(9(1)+2)=55`
 

`text{Find equation of line}\ \ m=55,\ text{through}\ (1,25)`

`y-y_1` `=m(x-x_1)`  
`y-25` `=55(x-1)`  
`y` `=55x-30`  

Filed Under: Tangents (Adv-X) Tagged With: Band 3, eo-derivative (HSC), smc-973-10-Find Tangent Equation

Calculus, 2ADV C1 2009 HSC 1d v1

Find the gradient of the tangent to the curve `y = 2x^3-5x^2 + 4` at the point `(2, 0)`.   (2 marks)

Show Answers Only

`text(Gradient = 2.)`

Show Worked Solution
`y` `= 2x^3-5x^2 + 4`  
`dy/dx` `= 6x^2-10x`  
     

`text(At)\ x = 2:`

`dy/dx= 6(2)^2-10(2)=24-20=4`

`:.\ text(Gradient of tangent at)\ (2, 0) = 4.`

Filed Under: Tangents (Adv-X) Tagged With: Band 3, eo-derivative (HSC), smc-973-10-Find Tangent Equation

Calculus, 2ADV C1 2013 HSC 11b v1

Evaluate  `lim_(x->1) ((x-1)(x+2)^2)/(x^2+x-2)`.   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

 `3`

Show Worked Solution

`lim_(x ->1) ((x-1)(x+2)^2)/(x^2+x-2)`

COMMENT: This question has been simplified as students no longer need to factorise the difference between 2 cubes (`x^3-2^3`).

`=lim_(x->1) ( (x -1)(x+2)^2)/( (x-1)(x+2)`

`=lim_(x->1) (x+2)`

`=3`

Filed Under: Standard Differentiation (Adv-X) Tagged With: Band 4, eo-derivative (HSC), smc-1069-50-Other

Calculus, 2ADV C1 2019 HSC 11c v1

Differentiate  `(4x + 3)/(3x-4)`.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`-25/(3x-4)^2`

Show Worked Solution

`text(Using quotient rule:)`

`u=4x+3,`     `v=3x-4`  
`u^{′} = 4,`     `v^{′} = 3`  
     
`y^{′}` `= (u^{′} v-v^{′} u)/v^2`
  `= (4(3x-4)-3(4x+3))/(3x-4)^2`
  `= (12x-16-12x-9)/(3x-4)^2`
  `= -25/(3x-4)^2`

Filed Under: Standard Differentiation (Adv-X) Tagged With: Band 3, eo-derivative (HSC), smc-1069-10-Quotient Rule

Calculus, 2ADV C1 2015 HSC 12c v1

Find  `f^{′}(x)`, where  `f(x) = (2x^2-3x)/(2-x).`   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`((x-3) (x + 1))/(x-1)^2`

Show Worked Solution

`f(x) = (2x^2-3x)/(2-x)`

`text(Using the quotient rule:)`

`u` `= 2x^2-3x` `\ \ \ \ \ \ v` `= 2-x`
`u^{′}` `= 4x-3` `\ \ \ \ \ \ v^{′}` `= -1`
`f^{′}(x)` `= (u^{′} v-uv^{′})/v^2`
  `= ((4x-3)(2-x)-(2x^2-3x) xx -1)/(2-x)^2`
  `= (-2x^2 + 8x-6)/(x-2)^2`
  `= (-2(x^2-4x+3)/(x-2)^2`
  `= (-2(x-3) (x-1))/(x-2)^2`

Filed Under: Standard Differentiation (Adv-X) Tagged With: Band 3, eo-derivative (HSC), smc-1069-10-Quotient Rule

Calculus, 2ADV C1 2023 HSC 7 MC v1

It is given that  \(y=f(g(x))\), where  \(f(2)=5\), \(f^{′}(2)=3\), \(g(4)=2\)  and  \(g^{′}(4)=-2\).

What is the value of \(y^{′}\) at  \(x=4\)?

  1. \(-6\)
  2. \(-2\)
  3. \(3\)
  4. \(6\)
Show Answers Only

\(A\)

Show Worked Solution
\(y\) \(=f(g(x))\)  
\(y^{′}\) \(=f^{′}(g(4)) \times g^{′}(4)\)  
  \(=f^{′}(2) \times -2\)  
  \(=3 \times -2\)  
  \(=-6\)  

 
\(\Rightarrow A\)

Filed Under: Standard Differentiation (Adv-X) Tagged With: Band 5, eo-derivative (HSC), smc-1069-45-Composite functions

Algebra, STD2 A1 2015 HSC 28d v1

The formula  \(C=\dfrac{5}{9}(F-32)\)  is used to convert temperatures between degrees Fahrenheit \((F)\) and degrees Celsius \((C)\).

Convert 18°C to the equivalent temperature in Fahrenheit.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(64.4\ \text{degrees}\ F\)

Show Worked Solution
\(C\) \(=\dfrac{5}{9}(F-32)\)
\(F-32\) \(=\dfrac{9}{5}C\)
\(F\)  \(=\dfrac{9}{5}C+32\)

 
\(\text{When}\ \ C = 18,\)

\(F\)  \(=\dfrac{9}{5}\times 18+32\)
  \(=64.4\ \text{degrees}\ F\)

Filed Under: Formula Rearrange (Std 2-X), Substitution and Other Equations (Std 2-X) Tagged With: Band 4, eo-derivative (HSC), smc-5232-10-Linear, smc-5233-20-Rearrange and substitute

Algebra, STD2 A1 2013 HSC 21 MC v1

Which equation correctly shows  \(n\)  as the subject of  \(V=600(1-n)\)?

  1. \(n=\dfrac{V-600}{600}\)
  2. \(n=\dfrac{600-V}{600}\)
  3. \(n=V-600\)
  4. \(n=600-V\)
Show Answers Only

\(B\)

Show Worked Solution
♦♦♦ Mean mark 27%
\(V\) \(=600(1-n)\)
\(1-n\) \(=\dfrac{V}{600}\)
\(n\) \(=1-\dfrac{V}{600}\)
  \(=\dfrac{600-V}{600}\)

 
\(\Rightarrow B\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 5, eo-derivative (HSC), smc-5232-10-Linear

Algebra, STD2 A1 2012 HSC 21 MC v1

Which of the following correctly expresses \(r\) as the subject of  \(V=\pi r^2+x\) ?

  1. \(r=\pm\sqrt{\dfrac{V}{\pi}}-x\)
  2. \(r=\pm\sqrt{\dfrac{V}{\pi}-x}\)
  3. \(r=\pm\sqrt{\dfrac{V-x}{\pi}}\)
  4. \(r=\pm\dfrac{\sqrt{V-x}}{\pi}\)
Show Answers Only

\(C\)

Show Worked Solution
\(V\) \(=\pi r^2+x\)
\(\pi r^2\) \(=V-x\)
\(r^2\) \(=\dfrac{V-x}{\pi}\)
\(\therefore\ r\) \(=\pm\sqrt{\dfrac{V-x}{\pi}}\)

\(\Rightarrow C\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 4, eo-derivative (HSC), smc-1200-20-Non-Linear, smc-1201-20-Non-Linear, smc-5232-20-Non-Linear

Algebra, STD2 A1 2011 HSC 18 MC v1

Which of the following correctly expresses  \(b\)  as the subject of  \(y= ax+\dfrac{1}{4}bx^2\)?

  1. \(b=\dfrac{4y-ax}{x^2}\)
  2. \(b=\dfrac{4(y-ax)}{x^2}\)
  3. \(b=\dfrac{\dfrac{1}{4}y-ax}{x^2}\)
  4. \(b=\dfrac{\dfrac{1}{4}(y-ax)}{x^2}\)
Show Answers Only

\(B\)

Show Worked Solution
\(y\) \(= ax+\dfrac{1}{4}bx^2\)
\(\dfrac{1}{4}bx^2\) \(=y-ax\)
\(bx^2\)  \(=4(y-ax)\)
\(b\) \(=\dfrac{4(y-ax)}{x^2}\)

 
\(\Rightarrow B\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 5, eo-derivative (HSC), smc-5232-20-Non-Linear

Algebra, STD2 A1 2010 HSC 18 MC v1

Which of the following correctly express  \(h\)  as the subject of  \(A=\dfrac{bh}{2}\) ?

  1. \(h=\dfrac{A-2}{b}\)
  2. \(h=2A-b\)
  3. \(h=\dfrac{2A}{b}\)
  4. \(h=\dfrac{Ab}{2}\)
Show Answers Only

\(C\)

Show Worked Solution
\(A\) \(=\dfrac{bh}{2}\)
\(bh\) \(=2A\)
\(\therefore\ h\) \(=\dfrac{2A}{b}\)

 
\(\Rightarrow C\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 4, eo-derivative (HSC), num-title-ct-pathc, num-title-qs-hsc, smc-1200-10-Linear, smc-1201-10-Linear, smc-4362-20-Formula rearrange

Algebra, STD2 A1 2006 HSC 18 MC v1

What is the formula for \(g\) as the subject of \(7d=8e+5g^2\)?

  1. \(g =\pm\sqrt{\dfrac{8e-7d}{5}}\)
  2. \(g =\pm\sqrt{\dfrac{7d-8e}{5}}\)
  3. \(g =\pm\dfrac{\sqrt{7d+8e}}{5}\)
  4. \(g =\pm\dfrac{\sqrt{8e-7d}}{5}\)
Show Answers Only

\(B\)

Show Worked Solution
\(7d\) \(=8e+5g^2\)
\(5g^2\) \(=7d-8e\)
\(g^2\) \(=\dfrac{7d-8e}{5}\)
\(g\) \(=\pm\sqrt{\dfrac{7d-8e}{5}}\)

\(\Rightarrow B\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 5, eo-derivative (HSC), smc-5232-20-Non-Linear

Algebra, STD2 A1 2007 HSC 19 MC v1

Which of the following correctly expresses  \(X\)  as the subject of  \(Y=4\pi\Bigg(\dfrac{X}{4}+L\Bigg)\)?

  1. \(X=\dfrac{Y}{\pi}-L\)
  2. \(X=\dfrac{Y}{\pi}-4L\)
  3. \(X=4L-\dfrac{Y}{2\pi}\)
  4. \(X=\dfrac{Y}{8\pi}-\dfrac{L}{4}\)
Show Answers Only

\(B\)

Show Worked Solution
\(Y\) \(=4\pi\Bigg(\dfrac{X}{4}+L\Bigg)\)
\(\dfrac{Y}{4\pi}\) \(=\dfrac{X}{4}+L\)
\(\dfrac{X}{4}\) \(=\dfrac{Y}{4\pi}-L\)
\(X\) \(=4\Bigg(\dfrac{Y}{4\pi}-L\Bigg)\)
\(X\) \(=\dfrac{Y}{\pi}-4L\)

 
\(\Rightarrow B\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 5, eo-derivative (HSC), smc-5232-10-Linear

Algebra, STD2 A1 2005 HSC 24c v1

Make  \(r\)  the subject of the equation  \(V=4\pi r^2\).   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

\(r=\pm\sqrt{\dfrac{V}{4\pi}}\)

Show Worked Solution
\(V\) \(=4\pi r^2\)
\(r^2\) \(=\dfrac{V}{4\pi}\)
\(\therefore\ r\) \(=\pm\sqrt{\dfrac{V}{4\pi}}\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 5, eo-derivative (HSC), smc-5232-20-Non-Linear

Algebra, STD2 A1 2016 HSC 24 MC v1

Which of the following correctly expresses \(M\) as the subject of  \(y=\dfrac{M}{V}+cX\)?

  1. \(M=Vy-VcX\)
  2. \(M=Vy+VcX\)
  3. \(M=\dfrac{y-cX}{V}\)
  4. \(M=\dfrac{y+cX}{V}\)
Show Answers Only

\(A\)

Show Worked Solution
\(y\) \(=\dfrac{M}{V}+cX\)
\(\dfrac{M}{V}\) \(=y-cX\)
\(\therefore\ M\) \(=V(y-cX)\)
  \(=Vy-VcX\)

 
\(\Rightarrow A\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 4, eo-derivative (HSC), smc-5232-10-Linear

Algebra, STD2 A1 2017 HSC 28d v1

Make  \(b\)  the subject of the equation  \(a=\sqrt{bc-4}\).  (2 marks)

Show Answers Only

\(b=\dfrac{a^2+4}{c}\)

Show Worked Solution
♦ Mean mark 46%.
\(a\) \(=\sqrt{bc-4}\)
\(a^2\) \(=bc-4\)
\(bc\) \(=a^2+4\)
\(\therefore\ b\) \(=\dfrac{a^2+4}{c}\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 5, eo-derivative (HSC), smc-5232-20-Non-Linear

Algebra, STD2 A1 2019 HSC 11 MC v1

Which of the following correctly expresses \(y\) as the subject of the formula  \(5x-2y-9=0\)?

  1.  \(y=\dfrac{5}{2}x-9\)
  2.  \(y=\dfrac{5}{2}x+9\)
  3.  \(y=\dfrac{5x+9}{2}\)
  4.  \(y=\dfrac{5x-9}{2}\)
Show Answers Only

\(D\)

Show Worked Solution

♦ Mean mark 50%.

\(5x-2y-9\) \(=0\)
\(2y\) \(=5x-9\)
\(\therefore\ y\) \(=\dfrac{5x-9}{2}\)

 
\(\Rightarrow D\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 5, eo-derivative (HSC), smc-5232-10-Linear

Algebra, STD1 A1 2019 HSC 34 v1

Given the formula  \(D=\dfrac{B(x+1)}{18}\), calculate the value of  \(x\)  when  \(D=90\)  and  \(B=400\).  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(3.05\)

Show Worked Solution

\(\text{Make}\ x\ \text{the subject:}\)

\(D\) \(=\dfrac{B(x+1)}{18}\)
\(18D\) \(=B(x+1)\)
\(x+1\) \(=\dfrac{18D}{B}\)
\(x\) \(=\dfrac{18D}{B}-1\)
\(\text{When }\) \(D=90, B=400\)
\(\therefore\ x\) \(=\dfrac{18\times 90}{400}-1=3.05\)

Filed Under: Formula Rearrange (Std 2-X), Substitution and Other Equations (Std 2-X) Tagged With: Band 4, eo-derivative (HSC), smc-5232-10-Linear, smc-5233-20-Rearrange and substitute

Algebra, STD2 A2 2022 HSC 14 MC v1

Which of the following correctly expresses \(x\) as the subject of  \(y=\dfrac{mx-c}{3}\) ?

  1. \(x=\dfrac{3y}{m}+c\)
  2. \(x=\dfrac{y}{3m}+c\)
  3. \(x=\dfrac{y+c}{3m}\)
  4. \(x=\dfrac{3y+c}{m}\)
Show Answers Only

\(D\)

Show Worked Solution
\(y\) \(=\dfrac{mx-c}{3}\)
\(3y\) \(=mx-c\)
\(mx\) \(=3y+c\)
\(\therefore\ x\) \(=\dfrac{3y+c}{m}\)

 
\(\Rightarrow D\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 4, eo-derivative (HSC), smc-5232-10-Linear

Copyright © 2014–2025 SmarterEd.com.au · Log in