The numbers, 75, \(p\), \(q\), 2025, form a geometric sequence.
Find the values of \(p\) and \(q\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
The numbers, 75, \(p\), \(q\), 2025, form a geometric sequence.
Find the values of \(p\) and \(q\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(p=225, \ q=675\)
\(a=75, \ 75r=p, \ 75r^2=q, \ 75r^3=2025\)
\(\text{Using}\ \ 75r^3=2025:\)
\(r=\sqrt[3]{\dfrac{2025}{75}}=3\)
\(p=75 \times 3 = 225\)
\(q=75 \times 3^{2}=675\)
The fourth term of a geometric sequence is 48 .
The eighth term of the same sequence is `3/16`.
Find the possible value(s) of the common ratio and the corresponding first term(s). (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`a=3072,\ r=1/4, or`
`a=-3072,\ r=-1/4`
`T_4=ar^3=48\ …\ (1)`
`T_8=ar^7=3/16\ …\ (2)`
| `(ar^7)/(ar^3)` | `=(3/16)/48` | |
| `r^4` | `=1/256` | |
| `r` | `=+-1/4` |
`text{If}\ \ r=1/4`
| `a(1/4)^3` | `=48` | |
| `a/64` | `=48` | |
| `a` | `=3072` |
`text{If}\ \ r=-1/4,\ \ a=-3072`
What is the limiting sum of the following geometric series?
`2000 - 1200 + 720 - 432…` (2 marks)
`1250`
`text(GP): \ r = T_2/T_1 = (-1200)/2000 = -3/5`
`|\ r\ | < 1`
| `S_oo` | `= a/(1 – r)` |
| `= 2000/(1 + 3/5)` | |
| `= 1250` |
The first four terms of a geometric sequence are
`4, – 8, 16, – 32`
The sum of the first ten terms of this sequence is
`B`
`4, –8, 16, –32,\ …`
| `text(GP where)\ \ \ a` | `= 4` |
| `r` | `=t_(2)/t_(1)= (–8)/4=–2` |
| `S_n` | `=(a(r^n – 1))/(r – 1)` |
| `:.S_10` | `=[4[(–2)^10 – 1]]/(–2 – 1)` |
| `= – 1364` |
`=> B`
The first four terms of a geometric sequence are 6400, `t_2` , 8100, – 9112.5
The value of `t_2` is
`B`
`text(GP is)\ \ 6400, t_2, 8100, –9112.5`
| `r` | `=t_2/t_1 = t_3/t_2` |
| `:. t_2 / 6400` | `= (–9112.5) / 8100` |
| `t_2` | `= (–9112.5 × 6400) / 8100` |
| `= – 7200` |
`=> B`
The first three terms of a geometric sequence are `6, x, 54.`
A possible value of `x` is
`C`
`text(S)text(ince the sequence is geometric,)`
| `r` | `=x/6=54/x` |
| `x^2` | `=54 xx 6` |
| `=324` | |
| `:.x` | `=18` |
`rArr C`
Evaluate `sum_(n = 2)^4 n^2`. (1 mark)
`29`
| `sum_(n = 2)^4 n^2` | `= 2^2 + 3^2 + 4^2` |
| `= 4 + 9 + 16` | |
| `= 29` |
Find the limiting sum of the geometric series
`3/4 + 3/16 + 3/64 + …`. (2 marks)
`1`
`3/4 + 3/16 + 3/64 + …`
`=> text(GP where)\ \ a = 3/4,\ \ \ r = T_2/T_1 = 1/4`
| `:. S_oo` | `= a/(1 – r)` |
| `= (3/4)/(1 – 1/4)` | |
| `= 1` |
Find the limiting sum of the geometric series `1 - 1/4 + 1/16 - 1/64 + …`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`4/5`
`1 – 1/4 + 1/16 – 1/64 + …`
`r = -1/4,\ \ a=1`
`text(S)text(ince)\ |\ r\ | = 1/4 < 1`
| `S_oo` | `= a/(1 – r)` |
| `= 1/(1 – (-1/4))` | |
| `= 1/(5/4)` | |
| `= 4/5` |
Find the limiting sum of the geometric series `13/5 + 13/25 + 13/125 + …` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`13/4`
`13/5 + 13/25 + 13/125`
`=>\ text(GP where)\ \ a=13/5,\ text(and)`
`r = T_2/T_1 = 13/25 ÷ 13/5 = 1/5`
`text(S)text(ince)\ |\ r\ | < 1`
| `S_oo` | `= a/(1-r)` |
| `= (13/5)/(1 – 1/5)` | |
| `= 13/5 xx 5/4` | |
| `= 13/4` |
Which expression is a term of the geometric series `3x − 6x^2 + 12x^3 − ...` ?
`C`
`3x\ – 6x^2 + 12x^3\ – …`
| `a` | `= 3x` |
| `r` | `= (T_2)/(T_1) = (-6x^2)/(3x) = -2x` |
| `:.\ T_n = ar^n` | `= 3x (-2x)^n` |
| `= 3(-2)^n x^(n + 1)` |
`text(If)\ n = 9`
`T_9 = 3(–2)^9 x^(9 + 1) = -1536 x^10`
`text(If)\ n = 10`
`T_10 = 3(–2)^10 x^(10 + 1) = 3072 x^11`
`=> C`
--- 4 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `1/(sqrtn + sqrt(n+1)) xx (sqrtn\ – sqrt(n+1))/(sqrtn\ – sqrt(n+1))`
`= (sqrtn\ – sqrt(n+1))/((sqrtn)^2\ – (sqrt(n+1))^2)`
`= (sqrtn\ – sqrt(n+1))/(n\ – (n + 1))`
`= (sqrtn\ – sqrt(n+1))/-1`
`= sqrt(n+1)\ – sqrtn`
ii. `1/(sqrt1 + sqrt2) + 1/(sqrt2 + sqrt3) + 1/(sqrt3 + sqrt4) + … + 1/(sqrt99 + sqrt100)`
`= (sqrt2\ – sqrt1) + (sqrt3\ – sqrt2) + (sqrt4\ – sqrt3) + … + (sqrt100\ – sqrt99)`
`= – sqrt1 + sqrt 100`
`= -1 + 10`
`= 9`
Consider the geometric series
`5+10x+20x^2+40x^3+\ ...`
--- 4 WORK AREA LINES (style=lined) ---
Find the value of `x`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
i. `text(Limiting sum when)\ |\ r\ |<1`
`r=T_2/T_1=(10x)/5=2x`
`:.\ |\ 2x\ |<1`
| `text(If)\ \ 2x` | `>0` | `text(If)\ \ 2x` | `<0` |
| `2x` | `<1` | `-(2x)` | `<1` |
| `x` | `<1/2` | `2x` | `> -1` |
| `x` | `> -1/2` |
`:. text(Limiting sum when)\ \ -1/2<x<1/2`
ii. `text(Given)\ S_oo=100, text(find) \ x`
`=> S_oo=a/(1-r)=100`
| ` 5/(1-2x)` | `=100` |
| `100(1-2x)` | `=5` |
| `200x` | `=95` |
| `:.\ x` | `=95/200=19/40` |
Evaluate `sum_(k=1)^4 (–1)^kk^2`. (2 marks)
`10`
`sum_(k=1)^4 (–1)^kk^2`
`=(–1)^1 xx 1^2+(–1)^2 xx 2^2+(–1)^3 xx 3^2+(–1)^4 xx 4^2`
`=-1+4-9+16`
`=10`
Find the limiting sum of the geometric series ..
`1\ -1/3\ +1/9\ -1/27\ ...` (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`3/4`
`a=1`
`r=T_2/T_1=(-1/3)/1=- 1/3`
`text(S)text(ince)\ |\ r\ |<1,`
| `:. S_oo` | `=a/(1-r)` |
| `=1/(1-(-1/3))` | |
| `=3/4` |