Suppose the geometric series \(x+x^2+x^3+\ \cdots\) has a limiting sum.
By considering the graph \(y=-1-\dfrac{1}{x-1}\), or otherwise, find the range of possible values of \(S\). (3 marks)
--- 12 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Suppose the geometric series \(x+x^2+x^3+\ \cdots\) has a limiting sum.
By considering the graph \(y=-1-\dfrac{1}{x-1}\), or otherwise, find the range of possible values of \(S\). (3 marks)
--- 12 WORK AREA LINES (style=lined) ---
\(S \in \Big( -\dfrac{1}{2}, \infty\Big ) \)
\(x + x^2+x^3\ \cdots \Rightarrow a=x, r=x\)
\(S=\dfrac{a}{1-r} = \dfrac{x}{1-x}=\dfrac{-(1-x)+1}{1-x} = -1+\dfrac{1}{1-x}=-1-\dfrac{1}{x-1}\)
\(\text{If limiting sum}\ \Rightarrow \abs{r} \lt 1\ \Rightarrow \ \abs{x} \lt 1\)
\(\Rightarrow \text{Possible values of}\ S =\ \text{range of}\ \ y=-1-\dfrac{1}{x-1}\ \text{in domain}\ \abs{x} \lt 1\)
\(\text{Consider}\ \ y=-1-\dfrac{1}{x-1}:\)
\(\text{Asymptote at}\ \ x=1.\)
\begin{array} {|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & -2 & -1 & 0 & 1 & 2 \\
\hline
\rule{0pt}{2.5ex} y \rule[-1ex]{0pt}{0pt} & -\dfrac{2}{3} & -\dfrac{1}{2} & \ \ 0\ \ & \infty & -2 \\
\hline
\end{array}
\(\text{As}\ x \rightarrow \infty, \ y \rightarrow -1\)
\(\text{As}\ x \rightarrow -\infty, \ y \rightarrow -1\)
\(\abs{x} \lt 1\ \Rightarrow \ y \in \Big( -\dfrac{1}{2}, \infty\Big ) \)
\(\therefore\ \text{Possible values of}\ S \in \Big( -\dfrac{1}{2}, \infty\Big ) \)
Consider the geometric series `1 − tan^2 theta + tan^4 theta − …`
--- 4 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `1 − tan^2 theta + tan^4 theta − …`
`=>\ text(GP where)\ \ a=1,\ \ r=T_2/T_1= − tan^2 theta`
`:. S_∞` | `= 1/(1 − (−tan^2 theta))` |
`= 1/(1 + tan^2 theta)` | |
`= 1/(sec^2 theta)` | |
`= cos^2 theta` |
ii. | `text(Find)\ \ theta\ \ text(such that)\ \ \ |\ r\ |` | `< 1` |
`|−tan^2 theta\ |` | `< 1` | |
` tan^2 theta` | `< 1` | |
`−1 < tan theta` | `< 1` | |
`:. − pi/4 < theta` | `< pi/4` |
The triangle `ABC` has a right angle at `B, \ ∠BAC = theta` and `AB = 6`. The line `BD` is drawn perpendicular to `AC`. The line `DE` is then drawn perpendicular to `BC`. This process continues indefinitely as shown in the diagram.
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. |
`text(Show)\ EF = 6\ sin^3\ theta`
`text(In)\ ΔADB`
`sin\ theta` | `= (DB)/6` |
`DB` | `= 6\ sin\ theta` |
`∠ABD` | `= 90 − theta\ \ \ text{(angle sum of}\ ΔADB)` |
`:.∠DBE` | `= theta\ \ \ (∠ABE\ text{is a right angle)}` |
`text(In)\ ΔBDE:`
`sin\ theta` | `= (DE)/(DB)` |
`= (DE)/(6\ sin\ theta)` |
`DE` | `= 6\ sin^2\ theta` |
`∠BDE` | `= 90 − theta\ \ \ text{(angle sum of}\ ΔDBE)` |
`∠EDF` | `= theta\ \ \ (∠FDB\ text{is a right angle)}` |
`text(In)\ ΔDEF:`
`sin\ theta` | `= (EF)/(DE)` |
`= (EF)/(6\ sin^2\ theta)` | |
`:.EF` | `= 6\ sin^3\ theta\ \ …text(as required)` |
ii. `text(Show)\ \ BD + EF + GH\ …`
`text(has limiting sum)\ =6 sec theta tan theta`
`underbrace{6\ sin\ theta + 6\ sin^3\ theta +\ …}_{text(GP where)\ \ a = 6 sin theta, \ \ r = sin^2 theta}`
`text(S)text(ince)\ \ 0 < theta < 90^@`
`−1` | `< sin\ theta` | `< 1` |
`0` | `< sin^2\ theta` | `< 1` |
`:. |\ r\ | < 1`
`:.S_∞` | `= a/(1 − r)` |
`= (6\ sin\ theta)/(1 − sin^2\ theta)` | |
`= (6\ sin\ theta)/(cos^2\ theta)` | |
`= 6 xx 1/(cos\ theta) xx (sin\ theta)/(cos\ theta)` | |
`= 6 sec\ theta\ tan\ theta\ \ …text(as required.)` |
Pat and Chandra are playing a game. They take turns throwing two dice. The game is won by the first player to throw a double six. Pat starts the game.
--- 2 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `P\ text{(Pat wins on 1st throw)}=P(W)`
`P(W)` | `=P\ text{(Pat throws 2 sixes)}` |
`=1/6 xx 1/6` | |
`=1/36` |
ii. `text(Let)\ P(L)=P text{(loss for either player on a throw)}=35/36`
`P text{(Pat wins on 1st or 2nd throw)}`
`=P(W) + P(LL W)`
`=1/36\ + \ (35/36)xx(35/36)xx(1/36)`
`=(2521)/(46\ 656)`
`=0.054\ \ \ text{(to 3 d.p.)}`
iii. `P\ text{(Pat wins eventually)}`
`=P(W) + P(LL\ W)+P(LL\ LL\ W)+ … `
`=1/36\ +\ (35/36)^2 (1/36)\ +\ (35/36)^2 (35/36)^2 (1/36)\ +…`
`=>\ text(GP where)\ \ a=1/36,\ \ r=(35/36)^2=(1225)/(1296)`
`text(S)text(ince)\ |\ r\ |<\ 1:`
`S_oo` | `=a/(1-r)` |
`=(1/36)/(1-(1225/1296))` | |
`=1/36 xx 1296/71` | |
`=36/71` |
`:.\ text(Pat’s chances to win eventually are)\ 36/71`.