Solve \(\sin 2 \theta-\sin \theta=0\) for \(0 \leq \theta \leq \pi\). (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Solve \(\sin 2 \theta-\sin \theta=0\) for \(0 \leq \theta \leq \pi\). (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\theta=0, \dfrac{\pi}{3}\ \text{or}\ \pi\)
| \(\sin\,2\theta-\sin\,\theta\) | \(=0\) | |
| \(2\,\sin\,\theta\,\cos\,\theta-\sin\,\theta\) | \(=0\) | |
| \(\sin\,\theta(2\,\cos\,\theta-1)\) | \(=0\) |
\(\sin\,\theta=0\ \ \Rightarrow\ \ \theta=0, \pi\)
\(2\,\cos\,\theta-1=0\ \ \Rightarrow\ \ \cos\,\theta=\dfrac{1}{2}\ \ \Rightarrow\ \ \theta=\dfrac{\pi}{3}\)
\(\therefore \theta=0, \dfrac{\pi}{3}\ \text{or}\ \pi.\)
Prove \(\dfrac{\sin A}{\cos A+\sin A}+\dfrac{\sin A}{\cos A-\sin A}=\tan 2 A\). (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
| \(\text{LHS}\) | \(=\dfrac{\sin A}{\cos A+\sin A}+\dfrac{\sin A}{\cos A-\sin A}\) |
| \(=\dfrac{\sin A(\cos A-\sin A)+\sin A(\cos A+\sin A)}{(\cos A+\sin A)(\cos A-\sin A)}\) | |
| \(=\dfrac{\sin A \cos A-\sin ^2 A+\sin A \cos A+\sin ^2 A}{\cos ^2 A-\sin ^2 A}\) | |
| \(=\dfrac{2 \sin A \cos A}{\cos 2 A}\) | |
| \(=\dfrac{\sin 2 A}{\cos 2 A}\) | |
| \(=\tan 2 A\) |
| \(\text{LHS}\) | \(=\dfrac{\sin A}{\cos A+\sin A}+\dfrac{\sin A}{\cos A-\sin A}\) |
| \(=\dfrac{\sin A(\cos A-\sin A)+\sin A(\cos A+\sin A)}{(\cos A+\sin A)(\cos A-\sin A)}\) | |
| \(=\dfrac{\sin A \cos A-\sin ^2 A+\sin A \cos A+\sin ^2 A}{\cos ^2 A-\sin ^2 A}\) | |
| \(=\dfrac{2 \sin A \cos A}{\cos 2 A}\) | |
| \(=\dfrac{\sin 2 A}{\cos 2 A}\) | |
| \(=\tan 2 A\) |
Prove that \(\dfrac{\cos \alpha-\cos (\alpha+2 \beta)}{2 \sin \beta}=\sin (\alpha+\beta)\). (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
| \(\text{LHS}\) | \(=\dfrac{\cos \alpha-\cos (\alpha+2 \beta)}{2 \sin \beta}\) |
| \(=\dfrac{\cos \alpha-[\cos \alpha\, \cos 2 \beta+\sin \alpha\, \sin 2 \beta]}{2 \sin \beta}\) | |
| \(=\dfrac{\cos \alpha-\left[\cos \alpha\left(\cos ^2 \beta-\sin ^2 \beta\right)+\sin \alpha(2 \sin \beta\, \cos \beta)\right]}{2 \sin \beta}\) | |
| \(=\dfrac{\cos \alpha-\cos \alpha\, \cos ^2 \beta+\cos \alpha\, \sin ^2 \beta+2 \sin \alpha\, \sin \beta\, \cos \beta}{2 \sin \beta}\) | |
| \(=\dfrac{\cos \alpha-\cos \alpha\left(1-\sin ^2 \beta\right)+\cos \alpha\, \sin ^2 \beta+2 \sin \alpha\, \sin \beta\, \cos \beta}{2 \sin \beta}\) | |
| \(=\dfrac{\cos \alpha-\cos \alpha+\cos \alpha\, \sin ^2 \beta+\cos \alpha\, \sin ^2 \beta+2 \sin \alpha\, \sin \beta\, \cos \beta}{2 \sin \beta}\) | |
| \(=\dfrac{2 \sin \beta(\cos \alpha\, \sin \beta+\sin \alpha\, \cos \beta)}{2 \sin \beta}\) | |
| \(=\sin (\alpha+\beta)\) |
| \(\text{LHS}\) | \(=\dfrac{\cos \alpha-\cos (\alpha+2 \beta)}{2 \sin \beta}\) |
| \(=\dfrac{\cos \alpha-[\cos \alpha\, \cos 2 \beta+\sin \alpha\, \sin 2 \beta]}{2 \sin \beta}\) | |
| \(=\dfrac{\cos \alpha-\left[\cos \alpha\left(\cos ^2 \beta-\sin ^2 \beta\right)+\sin \alpha(2 \sin \beta\, \cos \beta)\right]}{2 \sin \beta}\) | |
| \(=\dfrac{\cos \alpha-\cos \alpha\, \cos ^2 \beta+\cos \alpha\, \sin ^2 \beta+2 \sin \alpha\, \sin \beta\, \cos \beta}{2 \sin \beta}\) | |
| \(=\dfrac{\cos \alpha-\cos \alpha\left(1-\sin ^2 \beta\right)+\cos \alpha\, \sin ^2 \beta+2 \sin \alpha\, \sin \beta\, \cos \beta}{2 \sin \beta}\) | |
| \(=\dfrac{\cos \alpha-\cos \alpha+\cos \alpha\, \sin ^2 \beta+\cos \alpha\, \sin ^2 \beta+2 \sin \alpha\, \sin \beta\, \cos \beta}{2 \sin \beta}\) | |
| \(=\dfrac{2 \sin \beta(\cos \alpha\, \sin \beta+\sin \alpha\, \cos \beta)}{2 \sin \beta}\) | |
| \(=\sin (\alpha+\beta)\) |
Given that \(\sin (x)=a\), where \(x \in\left(\dfrac{3 \pi}{2}, 2 \pi\right)\), then \(\cos \left(\dfrac{x}{2}\right)\) is equal to
\(A\)
| \(\cos^2(x)+\sin^2(x)\) | \(=1\) | |
| \(\cos^2(x)+a^2\) | \(=1\) | |
| \(\cos(x)\) | \(=\sqrt{1-a^2}\ \ \Big(\text{take +ve root since}\ x \in\left(\frac{3 \pi}{2}, 2\pi\right),\ \cos(x)>0 \Big)\) | |
| \(2\cos^2 \left(\dfrac{x}{2}\right)-1\) | \(=\sqrt{1-a^2}\) | |
| \(\cos^2 \left(\dfrac{x}{2}\right)\) | \(=\dfrac{\sqrt{1-a^2}+1}{2}\) | |
| \(\cos\left(\dfrac{x}{2}\right)\) | \(=\pm \sqrt{\dfrac{\sqrt{1-a^2}+1}{2}}\) |
\(x \in\left(\dfrac{3 \pi}{2}, 2 \pi\right)\ \ \Rightarrow \ \ \dfrac{x}{2} \in\left(\dfrac{3 \pi}{4}, \pi\right) \)
\(\cos \left( \dfrac{x}{2} \right) \lt 0\ \ \text{(take negative root)}\)
\(\Rightarrow A\)
--- 3 WORK AREA LINES (style=lined) --- --- 5 WORK AREA LINES (style=lined) ---
b. \(\sqrt2-1\)
a. \(\dfrac{\sin 2 x}{1+\cos 2 x}\)
\(=\dfrac{2\sin x \cos x}{2\cos^{2} x}\)
\(=\dfrac{\sin x}{\cos x}\)
\(=\tan x\)
a. \(\dfrac{\sin 2 x}{1+\cos 2 x}\)
\(=\dfrac{2\sin x\, \cos x}{2\cos^{2} x}\)
\(=\dfrac{\sin x}{\cos x}\)
\(=\tan x\)
b.
\(\tan \dfrac{\pi}{8}\)
\(=\dfrac{\sin \frac{\pi}{4}}{1+\cos \frac{\pi}{4}}\)
\(= \dfrac{\frac{1}{\sqrt2}}{1+\frac{1}{\sqrt2}} \times \dfrac{\sqrt2}{\sqrt2} \)
\(= \dfrac{1}{\sqrt2+1} \times \dfrac{\sqrt2-1}{\sqrt2-1}\)
\(=\sqrt2-1\)
The expression `1-\frac{4\sin^2(x)}{\tan^2(x)+1}` simplifies to
`D`
| `1-\frac{4 \sin ^2 x}{\tan ^2 x+1}` | `= 1-\frac{4 \sin ^2 x}{\sec ^2 x}` | |
| `= 1-(2 \sin x\ \cos x)^2` | ||
| `= 1-\sin ^2 (2 x)` | ||
| `= \cos ^2 (2 x)` |
`=>D`
It is given that `sin x = 1/4`, where `pi/2 < x < pi`.
What is the value of `sin 2x`?
A. `-7/8`
B. `-sqrt 15/8`
C. `sqrt 15/8`
D. `7/8`
`B`
The angle `theta` satisfies `sin theta = 5/13` and `pi/2 < theta < pi`.
What is the value of `sin 2 theta`?
`D`