The function \(f(x)\) is defined by \(f(x)=\cos ^{-1}(\sin x)\) in the domain \((0, \pi)\).
Find \(f^{\prime}(x)\) for those values of \(x\) where it is defined. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
The function \(f(x)\) is defined by \(f(x)=\cos ^{-1}(\sin x)\) in the domain \((0, \pi)\).
Find \(f^{\prime}(x)\) for those values of \(x\) where it is defined. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(f^{\prime}(x)=-1 \ \text{for} \ \ x \in\left(0, \dfrac{\pi}{2}\right)\)
\(f^{\prime}(x)=1 \ \text{for} \ \ x \in\left(\dfrac{\pi}{2}, \pi\right)\)
| \(f(x)\) | \(=\cos ^{-1}(\sin x)\) |
| \(f^{\prime}(x)\) | \(=-\dfrac{\cos x}{\sqrt{1-\sin ^2 x}}\) |
| \(=-\dfrac{\cos x}{\abs{\cos x}}\) | |
| \(= \pm 1\) |
\(\text{Consider limitations:}\)
\(1-\sin ^2 x \neq 0 \ \Rightarrow \ \sin x \neq \pm 1 \ \Rightarrow \ x \neq \dfrac{\pi}{2}\)
\(\text{In lst quadrant:} \ \ -\dfrac{\cos x}{\abs{\cos x}}=-1\)
\(\text{In 2nd quadrant:}\ \ -\dfrac{\cos x}{\abs{\cos x}}=1\)
\(f^{\prime}(x)=-1 \ \ \text{for} \ \ x \in\left(0, \dfrac{\pi}{2}\right)\)
\(f^{\prime}(x)=1 \ \ \text{for} \ \ x \in\left(\dfrac{\pi}{2}, \pi\right)\)
Given \(y=\dfrac{\cos 2 x}{x^2}\), find the gradient of the tangent of its inverse function at \(\left(\dfrac{8 \sqrt{2}}{\pi^2}, \dfrac{\pi}{4}\right)\). (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
\(-\dfrac{\pi^2}{32}\)
\(y=\dfrac{\cos2x}{x^2}\)
\(\text{Inverse: Swap} \ \ x \leftrightarrow y\)
\(x=\dfrac{\cos 2 y}{y^2}\)
\(u=\cos 2 y \ \ \quad \quad \quad v=y^2\)
\(v^{\prime}=-2 \sin 2 y \ \ \quad v^{\prime}=2 y\)
\(\dfrac{dx}{dy}=\dfrac{-2 y^2 \sin 2 y-2 y\, \cos 2 y}{y^4}\)
\(\dfrac{dy}{dx}=\dfrac{y^4}{-2 y^2 \sin 2 y-2 y\, \cos 2 y}\)
\(\text{At}\ \ y=\dfrac{\pi}{4}:\)
| \(\dfrac{d y}{d x}\) | \(=\dfrac{\left(\dfrac{\pi}{4}\right)^4}{-2\left(\dfrac{\pi}{4}\right)^2 \sin \left(\dfrac{\pi}{2}\right)-2\left(\dfrac{\pi}{4}\right) \cos \left(\dfrac{\pi}{2}\right)}\) |
| \(=-\dfrac{\pi^4}{256} \times \dfrac{8}{\pi^2}\) | |
| \(=-\dfrac{\pi^2}{32}\) |
Differentiate the function \(f(x)=\arcsin \left(x^5\right)\). (1 mark) --- 3 WORK AREA LINES (style=lined) --- \(f^{\prime}(x)=\dfrac{5 x^4}{\sqrt{1-x^{10}}}\) \(f(x)=\sin ^{-1}\left(x^5\right)\) \(f^{\prime}(x)=5 x^4 \times \dfrac{1}{\sqrt{1-\left(x^5\right)^2}}=\dfrac{5 x^4}{\sqrt{1-x^{10}}}\)
Suppose `f(x) = tan(cos^(-1)(x))` and `g(x) = (sqrt(1-x^2))/x`.
The graph of `y = g(x)` is given.
--- 8 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `f(x) = tan(cos^(-1)(x))`
| `f^(′)(x)` | `= -1/sqrt(1-x^2) · sec^2(cos^(-1)(x))` |
| `= -1/sqrt(1-x^2) · 1/(cos^2(cos^(-1)(x)))` | |
| `= -1/(x^2sqrt(1-x^2))` |
`g(x) = (1-x^2)^(1/2) · x^(-1)`
| `g^(′)(x)` | `= 1/2 · -2x(1-x^2)^(-1/2) · x^(-1)-(1-x^2)^(1/2) · x^(-2)` |
| `= (-x)/(x sqrt(1-x^2))-sqrt(1-x^2)/(x^2)` | |
| `= (-x^2-sqrt(1-x^2) sqrt(1-x^2))/(x^2 sqrt(1-x^2))` | |
| `= (-x^2-(1-x^2))/(x^2sqrt(1-x^2))` | |
| `= -1/(x^2sqrt(1-x^2))` | |
| `=f^(′)(x)` |
ii. `f^(′)(x) = g^(′)(x)`
`=> f(x) = g(x) + c`
`text(Find)\ c:`
| `f(1)` | `= tan(cos^(-1) 1)` |
| `= tan 0` | |
| `= 0` |
`g(1) = sqrt(1-1)/0 = 0`
`f(1) = g(1) + c`
`:. c = 0`
`:. f(x) = g(x)`
Let `f(x) = sin^(-1) x + cos^(-1) x`.
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `f^{′}(x) = 1/sqrt(1-x^2) + (-1/sqrt (1-x^2)) = 0`
ii. `text(S)text(ince)\ \ f^{′}(x) = 0\ \ => f(x)\ \ text(is a constant.)`
`text(Substituting)\ \ x=1\ \ text{into the equation (any value works)}`
| `sin^(-1) 1 + cos^(-1) 1` | `= pi/2 + 0` | |
| `= pi/2\ \ text(… as required)` |
iii. `text(Domain restrictions require:)\ \ -1<x<1`
Find `d/(dx)\ cos^(−1)\ (3x^2).` (2 marks)
`(−6x)/(sqrt(1 − 9x^4))`
`d/(dx)\ cos^(−1)\ (3x^2)`
`= (−1)/sqrt(1 − (3x^2)^2) xx d/(dx) (3x^2)`
`= (−6x)/(sqrt(1 − 9x^4))`
Let `f(x) = sin^-1 (x + 5).`
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `f(x) = sin^-1 (x + 5)`
`text(Domain)`
`-1 <= x + 5 <= 1`
`-6 <= x <= -4`
`text(Range)`
`-pi/2 <= y <= pi/2`
ii. `y = sin^-1 (x + 5)`
`(dy)/(dx) = 1/sqrt(1-(x + 5)^2)`
`text(When)\ \ x = -5`
| `(dy)/(dx)` | `= 1/sqrt(1-(-5 + 5)^2)` |
| `= 1/sqrt(1-0)` | |
| `= 1` |
`:.\ text(Gradient of)\ \ y = f(x)\ \ text(at)\ \ x = -5\ \ text(is)\ \ 1.`
|
iii. |
![]() |
Find `d/(dx) (2 sin^-1 5x).` (2 marks)
`10/(sqrt (1 – 25x^2))`
| `d/(dx) (2 sin^-1 5x)` | `= 2 xx d/(dx) (sin^-1 5x)` |
| `= 2 xx 1/(sqrt(1 – (5x)^2)) xx d/(dx) (5x)` | |
| `= 2/(sqrt (1 – 25x^2)) xx 5` | |
| `= 10/(sqrt(1 – 25 x^2))` |
Let `f(x) = cos^(-1)\ (x) + cos^(-1)\ (-x)`, where `-1 ≤ x ≤ 1`.
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `text(Prove)\ f(x)\ text(is a constant)`
| `f(x)` | `= cos^(-1)(x) + cos^(-1)(-x), \ \ -1 ≤ x ≤ 1` |
| `f′(x)` | `= (-1)/sqrt(1 – x^2) + (-1)/sqrt(1 -(-x)^2) xx d/(dx) (-x)` |
| `= (-1)/sqrt(1 – x^2) + 1/sqrt(1 – x^2)` | |
| `= 0` |
`:.\ text(S)text(ince)\ \ f′(x) = 0, f(x)\ text(must be a constant.)`
| ii. | `f(0)` | `= cos^(−1)(0) + cos^(−1)(0)` |
| `= pi/2 + pi/2` | ||
| `= pi` |
`:.f(x) = pi`
`pi = cos^(−1)(x) + cos^(−1)(−x)`
`:.cos^(−1)(−x) = pi – cos^(−1)(x)\ \ …text(as required)`
Differentiate `cos^(–1) (3x)` with respect to `x`. (2 marks)
`(-3)/sqrt(1 – 9x^2)`
| `y` | `= cos^(-1) (3x)` |
| `dy/dx` | `= – 1/sqrt(1 – (3x)^2) * d/(dx) (3x)` |
| `= (-3)/sqrt(1 – 9x^2)` |
What is the derivative of `3 sin^(-1)\ x/2`?
`B`
`y = 3 sin^(-1)\ x/2`
`dy/dx = 3 xx 1/sqrt(4 – x^2)`
`=> B`
Differentiate `x^2 sin^(–1) 5x`. (2 marks)
`(5x^2)/sqrt(1\ – 25x^2) + 2x sin^(-1) 5x`
| `y` | `= x^2 sin^(-1) 5x` |
| `text(Using the product rule)` | |
| `(dy)/(dx)` | `= x^2 xx 1/sqrt(1\ – (5x)^2) xx d/(dx)(5x) + 2x sin^(-1) 5x` |
| `= (5x^2)/sqrt(1\ – 25x^2) + 2x sin^(-1) 5x` | |
What is the derivative of `cos^(–1) (3x)`?
`D`
`y = cos^(-1) (3x)`
| `dy/dx` | `= (-1)/sqrt(1\ – (3x)^2) xx d/dx (3x)` |
| `= (-3)/sqrt(1\ – 9x^2)` |
`=> D`